Description
A substring of a string T is defined as:
Given two strings A, B and one integer K, we define S, a set of triples (i, j, k):
You are to give the value of |S| for specific A, B and K.
Input
The input file contains several blocks of data. For each block, the first line contains one integer K, followed by two lines containing strings A andB, respectively. The input file is ended by K=0.
1 ≤ |A|, |B| ≤ 105
1 ≤ K ≤ min{|A|, |B|}
Characters of A and B are all Latin letters.
Output
For each case, output an integer |S|.
Sample Input
2 aababaa abaabaa 1 xx xx 0
Sample Output
225
后缀数组+单调栈统计公共前缀大于等于k的公共子串。
#include<set> #include<map> #include<ctime> #include<cmath> #include<stack> #include<queue> #include<bitset> #include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> #include<functional> #define rep(i,j,k) for (int i = j; i <= k; i++) #define per(i,j,k) for (int i = j; i >= k; i--) #define lson x << 1, l, mid #define rson x << 1 | 1, mid + 1, r #define fi first #define se second #define mp(i,j) make_pair(i,j) #define pii pair<int,int> using namespace std; typedef long long LL; const int low(int x) { return x&-x; } const double eps = 1e-8; const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int N = 2e5 + 10; const int read() { char ch = getchar(); while (ch<'0' || ch>'9') ch = getchar(); int x = ch - '0'; while ((ch = getchar()) >= '0'&&ch <= '9') x = x * 10 + ch - '0'; return x; } int m; struct point { int x, y, z; point(int x = 0, int y = 0, int z = 0) :x(x), y(y), z(z) {} }; struct Sa { char a[N], b[N]; int s[N], n1, n2; int rk[2][N], sa[N], h[N], w[N], now, n; int rmq[N][20], lg[N]; bool GetS() { return scanf("%d%s%s", &m, a + 1, b + 1) != EOF && m; } void getsa(int z, int &m) { int x = now, y = now ^= 1; rep(i, 1, z) rk[y][i] = n - i + 1; for (int i = 1, j = z; i <= n; i++) if (sa[i] > z) rk[y][++j] = sa[i] - z; rep(i, 1, m) w[i] = 0; rep(i, 1, n) w[rk[x][rk[y][i]]]++; rep(i, 1, m) w[i] += w[i - 1]; per(i, n, 1) sa[w[rk[x][rk[y][i]]]--] = rk[y][i]; for (int i = m = 1; i <= n; i++) { int *a = rk[x] + sa[i], *b = rk[x] + sa[i - 1]; rk[y][sa[i]] = *a == *b&&*(a + z) == *(b + z) ? m - 1 : m++; } } void getsa(int m) { n1 = strlen(a + 1); n2 = strlen(b + 1); n = n1 + n2 + 1; rep(i, 1, n1) s[i] = a[i]; s[n1 + 1] = 256; rep(i, 1, n2) s[i + n1 + 1] = b[i]; rk[1][0] = now = sa[0] = s[0] = 0; rep(i, 1, m) w[i] = 0; rep(i, 1, n) w[s[i]]++; rep(i, 1, m) rk[1][i] = rk[1][i - 1] + (bool)w[i]; rep(i, 1, m) w[i] += w[i - 1]; rep(i, 1, n) rk[0][i] = rk[1][s[i]]; rep(i, 1, n) sa[w[s[i]]--] = i; rk[1][n + 1] = rk[0][n + 1] = 0; //多组的时候容易出bug for (int x = 1, y = rk[1][m]; x <= n && y <= n; x <<= 1) getsa(x, y); for (int i = 1, j = 0; i <= n; h[rk[now][i++]] = j ? j-- : j) { if (rk[now][i] == 1) continue; int k = n - max(sa[rk[now][i] - 1], i); while (j <= k && s[sa[rk[now][i] - 1] + j] == s[i + j]) ++j; } } void getrmq() { h[n + 1] = h[1] = lg[1] = 0; rep(i, 2, n) rmq[i][0] = h[i], lg[i] = lg[i >> 1] + 1; for (int i = 1; (1 << i) <= n; i++) { rep(j, 2, n) { if (j + (1 << i) > n + 1) break; rmq[j][i] = min(rmq[j][i - 1], rmq[j + (1 << i - 1)][i - 1]); } } } int lcp(int x, int y) { int l = min(rk[now][x], rk[now][y]) + 1, r = max(rk[now][x], rk[now][y]); return min(rmq[l][lg[r - l + 1]], rmq[r - (1 << lg[r - l + 1]) + 1][lg[r - l + 1]]); } void work() { getsa(256); LL ans = 0; for (int i = 1, j; i < n; i = j + 1) { for (j = i; j < n && h[j + 1] >= m; j++); stack<point> p; LL tot[2] = { 0 , 0 }; rep(k, i, j) { int t = (sa[k] <= n1 ? 0 : 1); ans += tot[t ^ 1]; if (k == j) continue; point now = point(h[k + 1], t ? 0 : 1, t ? 1 : 0); while (!p.empty() && p.top().x >= now.x) { point q = p.top(); p.pop(); now.y += q.y; now.z += q.z; tot[0] -= 1LL * q.y * (q.x - m + 1); tot[1] -= 1LL * q.z * (q.x - m + 1); } tot[0] += 1LL * (now.x - m + 1) * now.y; tot[1] += 1LL * (now.x - m + 1) * now.z; p.push(now); } } printf("%lld\n", ans); } }sa; int main() { while (sa.GetS()) sa.work(); return 0; }