求一个矩阵中最大的二维子矩阵(元素和最大)

转载:http://blog.csdn.net/zhanxinhang/article/details/6731134


求一个矩阵中最大的n==2的二维子矩阵(元素和最大).如:
          1 2 0 3 4
          2 3 4 5 1
          1 1 5 3 0
          中最大的是:  
          4 5
          5 3
          要求:(1)写出算法;(2)分析时间复杂度;(3)用C写出关键代码

分析方法一、这是最容易想到也是最容易实现的方法。遍历矩阵(行迭代器为i,列迭代器为j),以当前遍历到的元素为首a[i,j],计算二维子矩阵的和(sum=a[i,j]+a[i+1,j]+a[i,j+1]+a[i+1,j+1]),并找出和最大的二维矩阵,注意矩阵的最后一行和最后一列不用遍历。时间复杂度为O(i*j)。

实现代码:

[cpp]  view plain copy
  1. /** 
  2. Author:花心龟 
  3. Blog:http://blog.csdn.net/zhanxinhang 
  4. **/  
  5. void get_max_22Matrix(int *a,int row,int col,int *result)  
  6. //a为原矩阵,row,col指a矩阵的行和列,result存储最终得到的子二维矩阵  
  7. {  
  8.   int maxsum=0,result_i,result_j,sum;  
  9.     
  10. #define a(i,j) *(a+(i)*col+(j))  //用二维的形式表示一维数组,访问需要一定的代价  
  11. #define result(i,j) *(result+(i)*2+(j))  
  12.     
  13.   for(int i=0; i<row-1; i++)  
  14.     for(int j=0; j<col-1; j++)  
  15.       {  
  16.         sum = a(i,j)+a(i+1,j)+a(i,j+1)+a(i+1,j+1); //访问四个元素并相加得到当前的和  
  17.         if(maxsum<sum) //更新最大子二维矩阵数据  
  18.           {  
  19.             maxsum = sum;  
  20.             result_i = i;  
  21.             result_j = j;  
  22.           }  
  23.       }  
  24.    
  25.    /* 将结果存储到result二维数组中*/  
  26.    result(0,0)=a(result_i,result_j);  
  27.    result(1,0)=a(result_i+1,result_j);  
  28.    result(0,1)=a(result_i,result_j+1);  
  29.    result(1,1)=a(result_i+1,result_j+1);  
  30. #undef a  
  31. #undef result  
  32. }  

方法二、这是对方法一的改进。分析方法一可知,方法一在每次遍历中,必须同时访问四个元素(a[i,j],a[i+1,j],a[i,j+1],a[i+1,j+1]),方法一的遍历效果如图所示(用方框框住的表示当前访问到或已访问的元素,元素被框住的次数就越多,表示被访问的次数也就越多,被染的颜色也就越深)。


可从图中看出,方法一中多个元素被重复访问多次,要知道访问一次元素的代价是不容小视的。实际上我们是可以对其进行改进,使每个元素的访问次数尽可能的降低的。改进方法如下:

一、增加一个变量,last_vsum(叫做“最新纵向和”,v是vertical) 且初始化为last_vsum = a[0,0]+a[1,0],其作用将在下面说明。

二、改变遍历方式,原先每次访问四个元素,现在变为每次访问纵向的两个元素(a[i,j],a[i+1,j]),横向遍历,遍历的起始点改为第二个元素,终点到最后一个元素。

三、改变求和方式,求和方法是:首先将上一次保存的和last_vsum加进sum中,再将last_vsum更新为当前纵向的两个元素a[i,j],a[i+1,j]之和,然后再将last_vsum加入sum中,这样就得到本次二维矩阵的和可与maxsum进行比较。如此每次求和只需访问两个元素a[i,j],a[i+1,j]。

方法二执行步骤与效果图:



实现代码:

[cpp]  view plain copy
  1. /** 
  2. Author:花心龟 
  3. Blog:http://blog.csdn.net/zhanxinhang 
  4. **/  
  5. void get_max_22Matrix(int *a,int row,int col,int *result)  
  6. {  
  7.   int maxsum=0,result_i,result_j,sum,last_vsum=0;  
  8.     
  9. #define a(i,j) *(a+(i)*col+(j))    
  10. #define result(i,j) *(result+(i)*2+(j))  
  11.     
  12.   last_vsum = a(0,0)+a(1,0);  //初始last_vsum  
  13.   for(int i=0; i<row-1; i++)  
  14.     {  
  15.      for(int j=1; j<col; j++)  
  16.       {  
  17.         sum = last_vsum ;  //将last_vsum加入sum  
  18.         last_vsum = a(i,j)+a(i+1,j);//更新last_vsum  
  19.         sum += last_vsum;//将更新后的last_vsum再与sum累加,得到当前子二维矩阵的和  
  20.         if(maxsum<sum)  
  21.           {  
  22.             maxsum = sum;  
  23.             result_i = i;  
  24.             result_j = j-1;  
  25.           }  
  26.       }  
  27.     }  
  28.    
  29.    /* 将结果存储到result二维数组中*/  
  30.    result(0,0)=a(result_i,result_j);  
  31.    result(1,0)=a(result_i+1,result_j);  
  32.    result(0,1)=a(result_i,result_j+1);  
  33.    result(1,1)=a(result_i+1,result_j+1);  
  34. #undef a  
  35. #undef result  
  36. }  

方法二与方法一效果对照图:



其中,方法二有中间行需要被访问两次,总共访问次数为5+5+2*5=20次。

而方法一3,4,5元素被访问了4次,总共访问次数为4+2*8+3*4=32次。

方法二与方法一的时间复杂度相同,但是效率要高于方法一,尤其是在大矩阵情况下效果尤为明显

方法三、这可作为对方法二的补充。以上方法二中给的示例矩阵是3*5的矩阵,也就是列大于行的矩阵,但如果是行大于列依然用方法2去执行效果如何呢?效果如下图所示:


5*3矩阵,访问次数为6+2*9=24

可见当行大于列时,利用方法2效果已经下降,如果是大矩阵的话可不只只有4的相差啊

针对这种情况,只需对方法二稍作改正,没错,就是原先方法二是横向遍历,现在改为纵向遍历,效果如下图所示:


同样是5*3矩阵,访问次数为5+5+2*5=20

又回到了方法2的访问次数。

这样如果是列大于行的矩阵使用方法二,也就是横向遍历

如果是行大于列的矩阵使用方法三,也就纵向遍历

实现代码略。

…………………………………………

赠一测试代码:

[cpp]  view plain copy
  1. int main()  
  2. {  
  3.   int a[3*5]={1,2,0,3,4,  
  4.           2,3,4,5,1,  
  5.           1,1,5,3,0};  
  6.   int result[2*2]={0};  
  7.   
  8.   get_max_22Matrix(a,3,5,result);  
  9.   
  10.  #define result(i,j) *(result+(i)*2+(j))  
  11.    for(int i =0; i<2; i++)  
  12.      {  
  13.        for(int j=0; j<2; j++)  
  14.      printf("%d ",result(i,j));  
  15.        printf("\n");  
  16.      }  
  17.   return 0;  
  18. }  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值