amos基础4-模型识别与适配度

本文介绍了AMOS中模型的适配度评估,包括基本适配指标、整体模型适配指标和模型内在结构适配度。强调了卡方值、RMSEA、GFI、AGFI、IFI、TLI、CFI等指标的重要性,并讨论了模型识别中的自由参数数与固定参数设定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,模型基本适配指标

在模型基本适配指标验证方面,Bogozzi和Yi(1988)提出以下几个准则

(1)估计参数中不能有负的误差方差

(2)所有误差变异必须达到显著水平(t值>1.96)

(3)估计参数统计量彼此相关的绝对值不能太接近1.

(4)潜在变量与其测量指标之间的因素负荷量,最好大于0.6

(5)不能有很大的标准误

(6)标准化参数<1

二,整体模型适配指标(模型外在质量的评估)

检验模型参数是否有违规估计现象之后在检验整体模型适配,在AMOS中极大似然比卡方值,其报表会出现3个模型的卡方值,此3个模型为预设模型,饱和模型,独立模型,要检验理论模型与实际数据是否适配或契合,应查看预设模型的CMIN值,若是一个假设模型达到适配,最好能进行模型简约的估计。一个适配度加的假设模型较多自由度,表示此假设模型是简约与精简模型,反之不是。

(一)绝对适配统计量 

卡方值 卡方自由度比 RMSEA GFI&AGFI

(二)增值适配统计量

(三)简约适配统计量

实务上卡方值不是个很实用的适配度指标,

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值