最近开始接触gensim库,之前训练word2vec用Mikolov的c版本程序,看了很久才把程序看明白,在gensim库中,word2vec和doc2vec只需要几个接口就可以实现,实在是方便。python,我越来越爱你了。
这个程序很简单,直接上程序了。
# coding:utf-8
import sys
import gensim
import sklearn
import numpy as np
from gensim.models.doc2vec import Doc2Vec, LabeledSentence
TaggededDocument = gensim.models.doc2vec.TaggedDocument
def get_datasest():
with open("out/wangyi_title_cut.txt", 'r') as cf:
docs = cf.readlines()
print len(docs)
x_train = []
#y = np.concatenate(np.ones(len(docs)))
for i, text in enumerate(docs):
word_list = text.split(' ')
l = len(word_list)
word_list[l-1] = word_list[l-1].strip()
document = TaggededDocument(word_list, tags=[i])
x_train.append(document)
return x_train
def getVecs(model, corpus, size):
vecs = [np.array(model.docvecs[z.tags[0]].reshape(1, size)) for z in corpus]
return np.concatenate(vecs)
def train(x_train, size=200, epoch_num=1):
model_dm = Doc2Vec(x_train,min_count=1, window = 3, size = size, sample=1e-3, negative=5, workers=4)
model_dm.train(x_train, total_examples=model_dm.corpus_count, epochs=70)
model_dm.save('model/model_dm_wangyi')
return model_dm
def test():
model_dm = Doc2Vec.load("model/model_dm_wangyi")
test_text = ['《', '舞林', '争霸' '》', '十强' '出炉', '复活', '舞者', '澳门', '踢馆']
inferred_vector_dm = model_dm.infer_vector(test_text)
print inferred_vector_dm
sims = model_dm.docvecs.most_similar([inferred_vector_dm], topn=10)
return sims
if __name__ == '__main__':
x_train = get_datasest()
model_dm = train(x_train)
sims = test()
for count, sim in sims:
sentence = x_train[count]
words = ''
for word in sentence[0]:
words = words + word + ' '
print words, sim, len(sentence[0])
我用了网页的热门娱乐新闻标题作为训练语料,输出结果如下,不知道是迭代次数不够还是怎么的,相似度都很低,不过语料只有4w条,且都是各式各样的八卦,很相似的句子确实少。
MJ 环球 春晚 复活 全场 尖叫 林俊杰 再现 经典 0.320982992649 11
《 舞林 》 神 剪辑 遭热议 导师 面临 最 痛苦 抉择 0.278693914413 13
辛晓琪 《 舞林 》 初试 舞步 令 评委 方俊 不淡定 0.251948922873 12
众星 助阵 舞林 盛典 陈志朋 曝 小虎队 或 计划 巡演 0.249549359083 12
《 舞林 》 首现 同 性别 组合 金星 杨丽萍 冲突 再起 0.247241020203 13
焦恩俊 三 小时 备战 《 舞林 》 深情 绅士 获 金星 高分 0.241078704596 14
《 舞 出 》 撒 贝宁 跳 苦情 舞 复活 陈冲 再现 经典 0.239552676678 15
吸血 女王 惊现 《 舞林 》 何琳 直呼 手脚冰凉 0.238774299622 11
虎年 春晚 看点 揭秘 黄宏 复活 《 整容 》 一次 过关 0.223410069942 13
郭书瑶 《 舞林 》 拼 性感 场上 与 歌迷 遥相呼应 0.218700557947 12