paddle高层API学习笔记(二)一般开发流程

使用深度学习就像搭积木一样,将各个模块搭好,然后再扮演一个调参侠的角色。

最近在看paddle就整理一下学到的paddle的使用。

 

1、导入飞桨

import paddle
import numpy as np

2、数据集准备

import paddle.vision.transforms as T

# 训练数据集
train_dataset = paddle.vision.datasets.Cifar100(mode='train', transform=T.ToTensor())

# 验证数据集
eval_dataset = paddle.vision.datasets.Cifar100(mode='test', transform=T.ToTensor())

3、模型选择和开发

3.1、模型开发

network = paddle.vision.models.resnet18(num_classes=100)

3.2、模型可视化

model = paddle.Model(network)
model.summary((-1, 3, 32, 32))

4、模型训练和调优

4.1训练参数设置:

model.prepare(paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()),
              paddle.nn.CrossEntropyLoss(),
              paddle.metric.Accuracy(topk=(1, 5)))

上面的参数涉及的内容:

(1)、使用Adam优化器;

(2)、学习率设置;

(3)、parameters=model.parameters() 是固定写法;

(4)、损失函数采用交叉熵,分类任务使用交叉熵,回归任务有不同的设置;

(5)、准确率评估前1和前5,可根据自己需要设置。

4.2、模型训练

model.fit(train_dataset,
          eval_dataset,
          epochs=20,
          batch_size=64,
          verbose=1)

参数说明:

(1)、训练数据集;

(2)、验证数据集,评估数据集;

(3)、训练epoch数,轮次数;

(4)、每个batch的大小,每一批送进去训练样本的数量;

(5)、verbode用于标志 日志展示格式

 

关于paddle高层API七日打卡有同学作了非常详细的博客分享:https://blog.csdn.net/weixin_45623093

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落花逐流水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值