转载:https://blog.csdn.net/wanghan0801/article/details/108473879
train的总量/batch_size–>16100/24=670—余20,无法整除,这下有点眉目了。正好出现在最后一个step上。
我这次试验用的是6个GPU跑的试验,使用torch.nn.DataParallel来实现的并行,按照源码的并行逻辑,是会根据num_parallel=batch_size/gpu_nums来决定均匀分配给每块GPU上的样本数量,那么我这里num_parallel=4.
到这里有没有突然发现数字上有了联系。没错,20/4=5。正好最后一个step的时候,前5张GPU把数据分完了,最后一张GPU上没有分到数据。
经过合理计算,修正batch_size和gpu个数,使得最后一个step时每张GPU上都能分到数据。