- 首先需要一个干净的Python虚拟环境,Python2/3都可以,我选择使用Python3.6
- 安装必须的包:
# 版本的话没有过多的要求,兼容即可,建议先安装torch>=0.3.0,然后pip会根据torch选择相应的其他包的版本
# torch的版本过多,建议去pytorch官网根据自己的系统情况选择对应的版本,不同的版本有不同的pip命令
# 我使用的是:pip install torch==1.2.0 torchvision==0.4.0 -f https://download.pytorch.org/whl/torch_stable.html
cycler 0.10.0
imutils 0.5.3
kiwisolver 1.1.0
matplotlib 2.2.2
numpy 1.17.4
opencv-python 4.1.2.30
Pillow 6.2.1
pip 10.0.1
pyparsing 2.4.5
python-dateutil 2.8.1
pytz 2019.3
PyYAML 4.2b2
setuptools 39.1.0
six 1.13.0
torch 1.2.0

本文记录了CCPD_RFCN车牌检测项目的代码调试过程,从创建Python环境开始,安装必需的库,下载源代码和预训练模型,然后执行demo.py。首先训练wR2模型,接着训练rpnet模型。所有训练和测试的日志信息都被记录为日志文件,如wR2.out,便于后续查阅。
最低0.47元/天 解锁文章


被折叠的 条评论
为什么被折叠?



