机器学习常用算法及对比

随机森林(Random Forest):

    随机森林是一个最近比较火的算法,它有很多的优点:

    在数据集上表现良好

    在当前的很多数据集上,相对其他算法有着很大的优势

    它能够处理很高维度(feature很多)的数据,并且不用做特征选择

    在训练完后,它能够给出哪些feature比较重要

    在创建随机森林的时候,对generlization error使用的是无偏估计

    训练速度快

    在训练过程中,能够检测到feature间的互相影响

    容易做成并行化方法

    实现比较简单

    随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。

    在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。

    按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。我觉得可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。

 

Gradient Boost Decision Tree:

   GBDT是一个应用很广泛的算法,可以用来做分类、回归。在很多的数据上都有不错的效果。GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman

   Gradient Boost其实是一个框架,里面可以套入很多不同的算法,可以参考一下机器学习与数学(3)中的讲解。Boost是"提升"的意思,一般Boosting算法都是一个迭代的过程,每一次新的训练都是为了改进上一次的结果。

   原始的Boost算法是在算法开始的时候,为每一个样本赋上一个权重值,初始的时候,大家都是一样重要的。在每一步训练中得到的模型,会使得数据点的估计有对有错,我们就在每一步结束后,增加分错的点的权重,减少分对的点的权重,这样使得某些点如果老是被分错,那么就会被“严重关注”,也就被赋上一个很高的权重。然后等进行了N次迭代(由用户指定),将会得到N个简单的分类器(basic learner),然后我们将它们组合起来(比如说可以对它们进行加权、或者让它们进行投票等),得到一个最终的模型。

   而Gradient Boost与传统的Boost的区别是,每一次的计算是为了减少上一次的残差(residual),而为了消除残差,我们可以在残差减少的梯度(Gradient)方向上建立一个新的模型。所以说,在Gradient Boost中,每个新的模型的简历是为了使得之前模型的残差往梯度方向减少,与传统Boost对正确、错误的样本进行加权有着很大的区别。

   在分类问题中,有一个很重要的内容叫做Multi-Class Logistic,也就是多分类的Logistic问题,它适用于那些类别数>2的问题,并且在分类结果中,样本x不是一定只属于某一个类可以得到样本x分别属于多个类的概率(也可以说样本x的估计y符合某一个几何分布),这实际上是属于Generalized Linear Model中讨论的内容,这里就先不谈了,以后有机会再用一个专门的章节去做吧。这里就用一个结论:如果一个分类问题符合几何分布,那么就可以用Logistic变换来进行之后的运算。

   假设对于一个样本x,它可能属于K个分类,其估计值分别为F1(x)…FK(x),Logistic变换如下,logistic变换是一个平滑且将数据规范化(使得向量的长度为1)的过程,结果为属于类别k的概率pk(x),

 

   对于Logistic变换后的结果,损失函数为:

    其中,yk为输入的样本数据的估计值,当一个样本x属于类别k时,yk = 1,否则yk = 0。

    将Logistic变换的式子带入损失函数,并且对其求导,可以得到损失函数的梯度:

    上面说的比较抽象,下面举个例子:

    假设输入数据x可能属于5个分类(分别为1,2,3,4,5),训练数据中,x属于类别3,则y = (0, 0, 1, 0, 0),假设模型估计得到的F(x) = (0, 0.3, 0.6, 0, 0),则经过Logistic变换后的数据p(x) = (0.16,0.21,0.29,0.16,0.16),y - p得到梯度g:(-0.16, -0.21, 0.71, -0.16, -0.16)。观察这里可以得到一个比较有意思的结论:

    假设gk为样本当某一维(某一个分类)上的梯度:

    gk>0时,越大表示其在这一维上的概率p(x)越应该提高,比如说上面的第三维的概率为0.29,就应该提高,属于应该往“正确的方向”前进

                  越小表示这个估计越“准确”

    gk<0时,越小,负得越多表示在这一维上的概率应该降低,比如说第二维0.21就应该得到降低。属于应该朝着“错误的反方向”前进

                  越大,负得越少表示这个估计越“不错误 ”

    总的来说,对于一个样本,最理想的梯度是越接近0的梯度。所以,我们要能够让函数的估计值能够使得梯度往反方向移动(>0的维度上,往负方向移动,<0的维度上,往正方向移动)最终使得梯度尽量=0),并且该算法在会严重关注那些梯度比较大的样本,跟Boost的意思类似。

 

 

    得到梯度之后,就是如何让梯度减少了。这里是用的一个迭代+决策树的方法,当初始化的时候,随便给出一个估计函数F(x)(可以让F(x)是一个随机的值,也可以让F(x)=0),然后之后每迭代一步就根据当前每一个样本的梯度的情况,建立一棵决策树。就让函数往梯度的反方向前进,最终使得迭代N步后,梯度越小。

    这里建立的决策树和普通的决策树不太一样,首先,这个决策树是一个叶子节点数J固定的,当生成了J个节点后,就不再生成新的节点了。

    算法的流程如下:(参考自treeBoost论文)

 

     0. 表示给定一个初始值

     1. 表示建立M棵决策树(迭代M次)

     2. 表示对函数估计值F(x)进行Logistic变换

     3. 表示对于K个分类进行下面的操作(其实这个for循环也可以理解为向量的操作,每一个样本点xi都对应了K种可能的分类yi,所以yi, F(xi), p(xi)都是一个K维的向量,这样或许容易理解一点)

     4. 表示求得残差减少的梯度方向

     5. 表示根据每一个样本点x,与其残差减少的梯度方向,得到一棵由J个叶子节点组成的决策树

     6. 为当决策树建立完成后,通过这个公式,可以得到每一个叶子节点的增益(这个增益在预测的时候用的)

每个增益的组成其实也是一个K维的向量,表示如果在决策树预测的过程中,如果某一个样本点掉入了这个叶子节点,则其对应的K个分类的值是多少。比如说,GBDT得到了三棵决策树,一个样本点在预测的时候,也会掉入3个叶子节点上,其增益分别为(假设为3分类的问题):

       (0.5, 0.8, 0.1),  (0.2, 0.6, 0.3),  (0.4, 0.3, 0.3),那么这样最终得到的分类为第二个,因为选择分类2的决策树是最多的。

     7. 的意思为,将当前得到的决策树与之前的那些决策树合并起来,作为新的一个模型(跟6中所举的例子差不多)

 

 

机器学习过程:

 

原型设计阶段(Prototyping):使用历史数据训练一个适合解决目标任务的一个或者多个机器学习模型,并对模型进行验证与离线评估,然后通过评估指标选择一个较好的模型。

应用阶段(Deployed):当模型达到设定的指标值时便将模型上线,投入生产,使用新生成的数据来对该模型进行在线评估,以及使用新模型更新模型。

离线评估,常用的评价指标有准确率(accuracy),精确率-召回率(precision-recall);

在线评估,一般用一些商业评价指标,如用户生命周期值(customer lifetime value)、广告点击率(click through rate)、用户流失率(customer churn rate)等。

分布漂移(Distribution Drift):机器学习中,模型假设数据分布是不变的,但在现实生活中,数据的分布会随着时间的移动而改变,有时甚至会变化得很急剧。常用的解决办法是,使用一些验证指标对模型在不断产生的数据集上进行性能跟踪,如果指标值能达到模型构建时的指标值,表示模型能够继续对当前数据进行拟合,否则就要重新训练甚至更换模型了。

 

垃圾邮件检测系统:本身是一个二分类问题(垃圾邮件vs正常邮件),可以使用准确率、对数损失函数、AUC等评价方法。

股票预测中,本身是一个实数系列数据预测问题,可以使用平方根误差(RMSE)等指标。

搜索引擎

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

归去来?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值