人工智能NLP算法岗面试题精选,附解析

问题1:当在文本数据中创建一个机器学习模型时,你创建了一个输入数据为 100K 的文献检索词矩阵(document-term matrix)。

下列哪些纠正方法可以用来减少数据的维度:

1、隐狄利克雷分布(Latent Dirichlet Allocation)

2、潜在语义索引(Latent Semantic Indexing)

3、关键词归一化(Keyword Normalization)

A、只有 1

B、2、3

C、1、3

D、1、2、3

答案:D

解析:所有的这些方法都可用于减少数据维度。


文末VIP会员、机械键盘、纸质书、硬盘等包邮送!


问题2:谷歌搜索特征——「Did you mean」,是不同方法相混合的结果。下列哪种方法可能是其组成部分?

1、用协同过滤模型(Collaborative Filtering model)来检测相似用户表现(查询)

2、在术语中检查 Levenshtein 距离的模型

3、将句子译成多种语言

A、1

B、2

C、1、2

D、1、2、3

答案:C

解析:协同过滤可以用于检测人们使用的是何

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值