问题1:当在文本数据中创建一个机器学习模型时,你创建了一个输入数据为 100K 的文献检索词矩阵(document-term matrix)。
下列哪些纠正方法可以用来减少数据的维度:
1、隐狄利克雷分布(Latent Dirichlet Allocation)
2、潜在语义索引(Latent Semantic Indexing)
3、关键词归一化(Keyword Normalization)
A、只有 1
B、2、3
C、1、3
D、1、2、3
答案:D
解析:所有的这些方法都可用于减少数据维度。
文末VIP会员、机械键盘、纸质书、硬盘等包邮送!
问题2:谷歌搜索特征——「Did you mean」,是不同方法相混合的结果。下列哪种方法可能是其组成部分?
1、用协同过滤模型(Collaborative Filtering model)来检测相似用户表现(查询)
2、在术语中检查 Levenshtein 距离的模型
3、将句子译成多种语言
A、1
B、2
C、1、2
D、1、2、3
答案:C
解析:协同过滤可以用于检测人们使用的是何