comfyui中,sam detector与yoloworld图像分割算法测试以及影响

🍖背景

图像处理中,经常会用到图像分割,在默认的comfyui图像加载中就有一个sam detector的功能,yoloworld是前一段时间公开的一个更强大的图像分割算法,那么这两个差别大吗?在实际应用中有什么区别吗?我们今天就简单测试一下。

🍦测试效果

首先,我们搭建一个简单的测试用工作流。

第一张测试图片为一个比较好抠图的香水瓶。

 用两种方式抠图之后的效果对比:

大家可以点击图片查看大图看一下实际效果。

可以看出,乍一看都没问题,仔细一看,yoloworld对于边缘的抠图效果会细腻很多。可能有些小朋友会纳闷了,就这么点区别,实际应用中应该没啥区别,所以凑合用应该也没问题......吧?

是这样吗?

我们接着看如果使用这两种抠图方式,配合brushnet来给物体画背景,效果会如何呢?

我来贴两张图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚梦小课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值