阿里云百炼模型API整合指南(Java版)——以Max模型实现流式输出、网络搜索与上下文记忆

  最近肯定有小伙伴想说ai这么强大我想做一个属于自己的ai但是本地部署又太麻烦了还吃配置有没有简单一点的实现,博主在这里说有的兄弟,有的,像这么强大的自定义ai配置一共有好几种:阿里百炼、火山引擎等等。。。。

准备环节

我们以阿里云百炼大模型为例来实现,可以自己训练数据、添加Prompt来实现自定义配置ai。

首先配置好阿里云API通常需要AccessKey才可以实现接下来的操作。

打开阿里云百炼平台的控制台,在我的应用中新增应用

可以按照业务需求来自己实现其他的创建,我们直接创建

1、模型的话可以自己选择模型,我的这里选择的是通义千问-max,目前阿里云也是出了挺多的模型可以免费调用送100w token。

2、可以编写Prompt,自定义实现个人ai智能体

# 角色
你是智能小俊,一个专注于编程领域的专家。

## 技能
### 技能 1: 解答编程问题
- 确定用户的问题意图和内容。
- 详细解答用户的编程疑问,解释关键代码和逻辑。
- 指导用户如何解决编程问题。

### 技能 2: 编写代码
- 根据用户需求编写相应的代码。
- 确保代码编写考虑到可读性、运行效率以及异常处理。
- 解释代码中的关键部分,以及如何配置和调用。

### 技能 3: 代码审查与优化
- 审查用户提供的代码,并提出改进建议。
- 优化代码以提高性能、可读性和可维护性。
- 提供详细的代码审查报告,指出潜在的问题和改进点。

### 技能 4: 技术文档撰写
- 为编写的代码提供清晰的技术文档。
- 包括代码的功能说明、使用方法、配置要求等。
- 确保文档易于理解和使用。

## 限制
- 只解答与编程相关的问题,如用户问到其他问题,不做回答。
- 在编写代码时,假设你有完整的类库和框架支持。
- 保证代码易读,运行高效,且处理了可能出现的异常情况。
- 提供代码的详细注释,解释关键逻辑部分,以及要求时如何配置和调用该代码片段。
- 代码审查和优化建议应基于当前最佳实践和技术标准。

3、阿里云百炼也是支持知识库检索功能,可以上传和自己智能体相关的文件来进行检索,使智能体更准确化回答问题,选择配置知识库创建新的知识库上传文件就可以,这里挺简单不过多描述。

另外的话还有插件功能,可以添加一些有趣的插件比如天气、计算器、python代码

4、最后可以自己在右侧的体验框调试自己的智能体了,如果没有问题然后点击发布,发布的话官方也是提供了文档。根据文档配置相关代码的api调用。

开发环节

一、环境准备
  1. 依赖项
    pom.xml中添加以下依赖:

    <!-- HTTP客户端 -->
    <dependency>
        <groupId>org.apache.httpcomponents</groupId>
        <artifactId>httpclient</artifactId>
        <version>4.5.13</version>
    </dependency>
    <!-- JSON处理 -->
    <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-databind</artifactId>
        <version>2.15.0</version>
    </dependency>

二、核心工具类封装
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;

public class AliyunAIClient {
    private static final String ACCESS_KEY = "your_access_key";
    private static final String SECRET_KEY = "your_secret_key";
    private static final String APP_ID = "你发布后的应用id";
    private static final String ENDPOINT = "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation";
    
    // 签名生成方法(简化版)
    private static String generateSignature(String timestamp) {
        // 实际需按阿里云签名算法V3实现
        return HmacSHA256.sign(SECRET_KEY, "text-generation:" + timestamp);
    }
    
    // 流式文本生成
    public static void streamGenerate(String prompt, String sessionId) throws Exception {
        CloseableHttpClient client = HttpClients.createDefault();
        HttpPost post = new HttpPost(ENDPOINT);
        
        // 构建请求头
        String timestamp = String.valueOf(System.currentTimeMillis());
        post.setHeader("Authorization", "Bearer " + ACCESS_KEY);
        post.setHeader("X-DashScope-Signature", generateSignature(timestamp));
        post.setHeader("Content-Type", "application/json");
        
        // 构建请求体(含历史上下文)
        String jsonBody = String.format(
            "{ \"model\": \"max\", \"input\": { \"messages\": [{\"role\": \"user\", \"content\": \"%s\"}] }, \"parameters\": { \"stream\": true, \"session_id\": \"%s\" } }",
            prompt, sessionId
        );
        post.setEntity(new StringEntity(jsonBody));
        
        // 执行流式请求
        try (CloseableHttpResponse response = client.execute(post)) {
            InputStream stream = response.getEntity().getContent();
            BufferedReader reader = new BufferedReader(new InputStreamReader(stream));
            String line;
            while ((line = reader.readLine()) != null) {
                if (!line.isEmpty()) {
                    JsonNode node = new ObjectMapper().readTree(line);
                    System.out.print(node.get("output").asText());
                }
            }
        }
    }
}

应用发布之后,配置了应用id可以像我这样来进行添加到代码里


三、功能扩展实现
1. 网络搜索集成(示例:阿里云OpenSearch)
public class SearchService {
    private static final String OPENSEARCH_ENDPOINT = "https://opensearch-cn-hangzhou.aliyuncs.com";
    
    public static String webSearch(String query) {
        // 调用OpenSearch API(需单独配置)
        // 返回结构化搜索结果(JSON)
        return "[搜索结果]:关于 " + query + " 的相关信息...";
    }
    
    // 将搜索结果作为上下文注入AI请求
    public static void aiWithSearch(String question, String sessionId) throws Exception {
        String searchResult = webSearch(question);
        String enhancedPrompt = "根据以下信息回答问题:\n" + searchResult + "\n问题:" + question;
        AliyunAIClient.streamGenerate(enhancedPrompt, sessionId);
    }
}
2. 上下文历史记忆管理
import java.util.HashMap;
import java.util.Map;

public class SessionManager {
    private static Map<String, String> sessionHistory = new HashMap<>();
    
    // 获取或创建会话
    public static String getSession(String sessionId) {
        return sessionHistory.computeIfAbsent(sessionId, k -> "[]");
    }
    
    // 更新历史记录(JSON格式)
    public static void updateHistory(String sessionId, String newMessage) {
        String history = sessionHistory.get(sessionId);
        String updated = history.substring(0, history.length()-1) + ", " + newMessage + "]";
        sessionHistory.put(sessionId, updated);
    }
}
3. 自定义提示模板
public class CustomPrompt {
    // 加载训练数据(示例从文件读取)
    private static String trainingData = FileUtils.readFile("data/custom_knowledge.txt");
    
    // 构建增强提示
    public static String buildPrompt(String userInput) {
        return String.format(
            "你是一个专业助手,请基于以下知识库回答问题:\n%s\n用户问题:%s",
            trainingData, userInput
        );
    }
}

四、完整调用示例
public class MainApplication {
    public static void main(String[] args) {
        try {
            // 初始化会话
            String sessionId = "user_123";
            SessionManager.getSession(sessionId);
            
            // 场景1:流式问答
            AliyunAIClient.streamGenerate("Java如何实现多线程?", sessionId);
            
            // 场景2:联网搜索增强
            SearchService.aiWithSearch("2024年人工智能趋势", sessionId);
            
            // 场景3:自定义知识库问答
            String customPrompt = CustomPrompt.buildPrompt("我们公司的产品优势是什么?");
            AliyunAIClient.streamGenerate(customPrompt, sessionId);
            
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

五、关键配置说明
  1. 签名算法
    需完整实现阿里云签名算法V3,包含CanonicalizedHeaders和签名计算。

  2. 流式响应处理

    • 通过parameters.stream=true开启流式输出

    • 每条响应包含output字段的增量内容

  3. 模型微调

    • 在百炼控制台上传训练数据(JSONL格式)

    • 创建专属模型版本后,替换API请求中的model参数


六、性能优化建议
  1. 连接池配置

    PoolingHttpClientConnectionManager cm = new PoolingHttpClientConnectionManager();
    cm.setMaxTotal(200); // 最大连接数
    cm.setDefaultMaxPerRoute(50); // 单路由最大连接
    CloseableHttpClient client = HttpClients.custom().setConnectionManager(cm).build();
  2. 异步非阻塞调用

使用CompletableFuture实现并行请求:

CompletableFuture.runAsync(() -> {
    AliyunAIClient.streamGenerate(prompt, sessionId);
});


部署效果验证
• 流式输出:观察控制台逐字打印效果
• 上下文记忆:在后续请求中携带相同session_id测试历史连贯性
• 网络搜索:验证回答是否包含实时搜索结果关键词
常见问题排查
• Q403错误:检查AccessKey和签名算法
• 流中断:增加网络超时设置(http.socket.timeout=30000)
• 响应延迟:启用模型量化(在请求参数中添加"quantization": "4bit")

大家如果用的时候有问题的话私信我,给大家帮助,希望大家多多喜欢!!点点关注点点赞!!

### 如何通过阿里云百炼 API 实现知识库的存储 利用阿里云百炼 API 的 RAG(检索增强生成)技术,可以高效地构建基于知识库的应用程序。以下是关于如何使用百炼 API 来完成知识库存储的具体方法: #### 1. 知识库配置 在初始化 `Application` 对象时,可以通过传递 `rag_config` 参数来指定知识库的相关属性。这些属性包括但不限于知识库路径、嵌入模型和向量数据库的选择。 ```python from bailian import Application app = Application.create( rag_config={ "knowledge_base": "oss://your-bucket/finance-docs/", # OSS 路径用于存储文档数据 "embedding_model": "bge-m3", # 使用的嵌入模型名称 "vector_db": "milvus" # 向量数据库类型 } ) ``` 上述代码片段展示了如何通过配置 `knowledge_base` 属性指向对象存储服务 (OSS),从而实现外部文件作为知识源的加载[^1]。 #### 2. 支持的知识库格式 为了适配多样化的场景需求,百炼 API 提供了对多种内容格式的支持。例如 PDF 文件、Word 文档 (.docx) 或纯文本文件都可以被解析并转化为结构化数据存入向量数据库中。具体操作可能涉及预处理脚本以确保输入材料符合预期标准。 #### 3. 数据持久化索引建立 当设定好基础架构之后,在实际运行过程中每次调用 `query()` 函数之前都需要先执行一次完整的索引重建过程或者增量更新机制。这一步骤对于保持查询性能至关重要,因为它直接影响到后续自然语言理解阶段的速度准确性。 ```python response = app.query("最近美联储加息对科技股的影响是什么?") print(response.text) ``` 这里展示的是最终用户界面部分——即接收来自前端用户的请求并将结果返回给他们的简化本;而背后复杂的计算逻辑则完全隐藏起来让用户专注于高层次的设计思考之上。 另外值得注意的是除了阿里巴巴集团旗下的产品之外还有其他类似的解决方案可供选择比如字节跳动推出的 Coze 平台同样提供了强大的插件生态系统以及简便直观的操作体验使得即使是初学者也能轻松上手开发属于自己的人工智能应用程序[^2]。 尽管如此每种工具都有各自的特点所以在决定采用哪一个方案前最好能充分考虑项目特定的需求然后再做出明智的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值