Leetcode - 滑动窗口

1. 滑动窗口

  1. 滑动窗口的大概思想如下:
  1. 可以通过两个指针来标识窗口的边界。
  2. 窗口的长度是可以固定的,也可以是可变的,完全取决于求解的问题性质。
  3. 维护一个或者一组和窗口相关联的状态变量,能有效降低计算量和算法复杂度。
  1. 算法思想:什么是滑动窗口?

其实就是一个队列,比如例题中的 abcabcbb,进入这个队列(窗口)为 abc 满足题目要求,当再进入a,队列变成了 abca,这时候不满足要求。所以,我们要移动这个队列
如何移动?我们只要把队列的左边的元素移出就行了,直到满足题目要求

总结:

  1. 设定左指针和右指针
  2. 先移动右指针,左右指针区域是题目满足区间
  3. 当不满足题目时,移动左右指针,直到结束

在这里插入图片描述

2. 举例

2.1 无重复字符的最长子串

无重复字符的最长子串

2.1.1 Java
class Solution {
    public int lengthOfLongestSubstring(String s) {
        int[] last = new int[128];
        for(int i = 0; i < 128; i++) {
            last[i] = -1;
        }
        int res = 0;
        int start = 0; // 窗口开始位置
        int n = s.length();
        for(int i = 0; i < s.length(); i++) {
            int index = s.charAt(i);
            start = Math.max(start, last[index]);
            //last[index]代表上一次出现的位置,但是字符串内字符不能重复,所以要从上一次出现位置的下一个位置开始
            //last[index]的存在是为了使得窗口滑动到下一个位置
            res   = Math.max(res, i - start + 1);//当前字符串个数 = 数据末指针-窗口初始位置+1
            last[index] = i+1;//窗口的下一个位置赋值
        }
        return res;
    }
}
2.1.2 Python
class Solution:
    def lengthOfLongestSubstring(self, s: str) -> int:
        dic, res, i, j = {}, 0, -1, 0
        for j in range(len(s)):
            if s[j] in dic:
                i = max(dic[s[j]], i) # 更新左指针 i 
            dic[s[j]] = j # 哈希表记录
            res = max(res, j - i) # 更新结果
        return res

2.2 长度最小的子数组

长度最小的子数组 && 参考文档

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int i=0,j=0,sum=0,min = Integer.MAX_VALUE;
        while(i<nums.length){
            sum = sum +nums[i++];
            while(sum >= target){
                min = Math.min(min,i-j);
                 sum = sum - nums[j++];
            }
        }
        return min == Integer.MAX_VALUE ? 0 : min;
    }
}

2.3 滑动窗口最大值

滑动窗口最大值

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        int length = nums.length;
        int i = 0,j = 0;
        int out = length-k+1;//外循环次数 
        int []arr = new int[out];
        for(i = 0; i<out ; i++){
            int max = Integer.MIN_VALUE;
            for(j = i; j<i+k ; j++){
                max = Math.max(max,nums[j]);
            }
            arr[i] = max;
        }
        return arr;
    }
}

2.4 最小覆盖子串

最小覆盖子串 && 参考文旦

class Solution {
    public String minWindow(String s, String t) {
        HashMap<Character,Integer> hs = new HashMap<Character,Integer>();
        HashMap<Character,Integer> ht = new HashMap<Character,Integer>();
        for(int i = 0;i < t.length();i ++){
            ht.put(t.charAt(i),ht.getOrDefault(t.charAt(i), 0) + 1);
        }
        String ans = "";
        int len = 1000000, cnt = 0;  
        for(int i = 0,j = 0;i < s.length();i ++)
        {
            hs.put(s.charAt(i), hs.getOrDefault(s.charAt(i), 0) + 1);
            if(ht.containsKey(s.charAt(i)) && hs.get(s.charAt(i)) <= ht.get(s.charAt(i))) cnt ++;
            while(j < i && (!ht.containsKey(s.charAt(j)) || hs.get(s.charAt(j)) > ht.get(s.charAt(j))))
            {
                int count = hs.get(s.charAt(j)) - 1;
                hs.put(s.charAt(j), count);
                j ++;
            }
            if(cnt == t.length() && i - j + 1 < len){
                len = i - j + 1;
                ans = s.substring(j,i + 1);
            }
        }
        return ans;
    }
}

2.5 删除有序数组中的重复项

删除有序数组中的重复项

class Solution {
    public int removeDuplicates(int[] nums) {
        int n = nums.length;
        if(n == 0) return 0;
        int fast = 1, slow = 1;
        while (fast < n) {
            if (nums[fast] != nums[fast - 1]) {
                nums[slow] = nums[fast];
                slow ++;
            }
            fast ++;
        }
        return slow;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值