leetcode-236. 二叉树的最近公共祖先

leetcode-236. 二叉树的最近公共祖先

题目

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

示例 1:

img

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。

示例 2:

img

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。

示例 3:

输入:root = [1,2], p = 1, q = 2
输出:1

提示:

  • 树中节点数目在范围 [2, 105] 内。
  • -109 <= Node.val <= 109
  • 所有 Node.val 互不相同
  • p != q
  • pq 均存在于给定的二叉树中。

解法一(后序遍历非递归)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == NULL)   return NULL;
        stack<TreeNode*> S;
        S.push(root);           // 根节点入栈
        TreeNode* pre = NULL;   // 前驱结点
        TreeNode* cur = root;     // 当前遍历结点
        bool flag_p = false;
        bool flag_q = false;
        stack<TreeNode*> ancestor_p;
        stack<TreeNode*> ancestor_q;
        while((cur || !S.empty()) && (flag_p == false || flag_q == false)){
            if(cur){              // 沿左孩子依次入栈
                S.push(cur);
                cur = cur->left;
            }
            else{
                cur = S.top();    // 栈顶元素
                if(cur->right && pre != cur->right) //右孩子存在且未遍历
                     cur = cur->right;    //  转入右子树执行沿左孩子依次入栈操作
                else{
                    if(cur == p){
                        flag_p = true;
                        ancestor_p = S;    // 复制栈
                    }
                    if(cur == q){
                        flag_q = true;
                        ancestor_q = S;    // 复制栈
                    }
                    S.pop();
                    pre = cur;        // 更新pre
                    cur = NULL;       // 将p置为NULL,保证接下来继续执行栈顶元素判定
                }
            }
        }
        // 将两个栈依次对比,逐一匹配,第一个找到的公共节点即最近公共祖先
        vector<TreeNode*> a_p;
        vector<TreeNode*> a_q;
        int lenp = ancestor_p.size();
        int lenq = ancestor_q.size();
        for(int i = 0;i <lenp;i++){
            cur = ancestor_p.top();
            ancestor_p.pop();
            a_p.push_back(cur);
            }
        for(int j = 0; j <lenq;j++){
            cur = ancestor_q.top();
            ancestor_q.pop();
            a_q.push_back(cur);

        }
        for(int i = 0;i < lenp;i++){
            for(int j = 0;j<lenq;j++){
                if(a_p[i] == a_q[j])
                    return a_q[j];
            }
        }
        return NULL;
    }
};

递归

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if(root == NULL || root == p || root == q)
            return root;
        TreeNode* left = lowestCommonAncestor(root->left,p,q);
        TreeNode* right = lowestCommonAncestor(root->right,p,q);
        if(left&&right) return root;    // 左右子树都不为空,则返回根节点
        //* 左边存在,那么右边肯定为空,
        //* 右边存在,那么左边肯定为空,
        return left? left:right;        
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JlexZzzz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值