**************************转载请注明出处!******************************
很久很久以前,我讲了深搜(这到底是有多久 - -|||)。对应的当然就得有宽搜。搜索的概念上次深搜已经讲过了,可以去“复习”一下。
既然搜索搜的是状态之间的转移,那么我们就可以将这些状态看做一棵树。假设我们有一个田字格,每个格子可能是白色或黑色,我们想知道有多少种情况。此时,田字格每种情况就相当于一个状态,我们可以通过状态之间的转移来讲所有情况“搜索”出来。
上面列举了所有的状态,而那些先表示了状态之间的一些关系——只有一个格子颜色不同。而最初,我们不知道有这些情况。所以就要设计一种状态转移的方法来“遍历”出一颗“状态树”,这棵树的节点是每种情况。根据某种方式,由一种状态出发就可以搜索出想要的答案。
比如,我们从空白状态开始。给这个田字格染色。于是就成了下面这个情况。图片左肩上的数字表示状态搜索的顺序。很明显,这些状态构成了一棵树。根节点是一个空田字格。下面一层是有两个块被染色的状态,再下面是3块被染色,最后是全染色的状态。当然,搜索过的状态需要标记,以便于某些状态不会被重复搜到。当然你也可以设计一种特殊的算法,似的不需要判重。搜索过程如下:由1找到2、3、4、5——2找到6、7、8——3找到9、10——4找到11——6找到12、13——7找到14——9找到15——12找到16.
宽搜也就由这个搜索的顺序得名,搜索的顺序,与树的宽度优先遍历顺序一致。宽搜一个用途就是对一些最优问题进行求解。从上图可以看到,转移次数最少的情形最先被搜索到。到求最优解问题中,就可以看做是代价小的情况会被最先搜索到。但宽搜也有缺点,就是要记录每种状况的各种参数。相比较深搜的回溯算法,只改变部分参数继续搜索,空间复杂度要更高。
下面就来谈谈宽搜的实现。其实,根据上面的描述,大家应该都想到了队列实现。搜索的一个循环内,取头结点,进行状态的扩展,扩展到的新状态判重之后从队尾进队。如此循环,直到搜索到答案或者队列为空。看~~~整起来很简单~
while (队列非空) do
状态 ← DEQUEUE(Q)
(循环,状态扩展)
If (状态不重复)
ENQUEUE(状态)
状态标记(已搜过)
不知道上面这个,昊式独家的中英杂交伪代码能不能把这个过程讲明白。当然,搜这些状态还要很多技巧,需要操练。不能立即明白也没关系,多多体会。