带L2正则化项的回归

正则化(regularization)

1.1 过拟合问题

监督学习中的线性回归和逻辑回归,它们能够有效地解决很多实际问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合( over-fitting )的问题,可能会导致它们效果很差。

在本小节,我将为你解释什么是过度拟合问题,并且在接下来的几个小节中,我们将谈论一种称为正则化( regularization )的技术,它可以改善或者减少过度拟合问题。

如果我们有非常多的特征,我们通过学习得到的假设可能非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据(测试集的代价函数的值可能比较大)。

下图是一个回归问题的例子:
1
第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出,若给出一个新的样本使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时效果可能会不好;而中间的模型在这三个里面是最合适。

分类问题中也存在这样的问题:
2
这里我们就以多项式理解, x x x 的次数越高,拟合的越好,但相应的预测的能力就可能变差。

问题是,如果我们发现了过拟合问题,应该如何处理?

  • 丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一些特征选择的算法来帮忙(例如 PCA );
  • 正则化。保留所有的特征,但是减少参数的数量或者减小参数值的大小(magnitude)。
1.2 代价函数

上小节的回归问题中如果我们的模型是: h θ ( x ) = θ T X = θ 0 + θ 1 x 1 + θ 2 x 2 2 + θ 3 x 3 3 + θ 4 x 4 4 h_{\theta}(x) = \theta^TX = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 x_3^3 + \theta_4 x_4^4 hθ(x)=θTX=θ0+θ1x1+θ2x22+θ3x33+θ4x44 ,我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于 0 的话,我们就能很好的拟合了。所以我们要做的就是在一定程度上减小这些参数 θ \theta θ 的值,这就是正则化的基本方法。我们决定要减少 θ 3 \theta_3 θ3 θ 4 \theta_4 θ4 的大小,我们要做的便是修改代价函数,对其中的 θ 3 \theta_3 θ3 θ 4 \theta_4 θ4 设置一点惩罚。这样做的话,我们在尝试最小化代价时也需要将这个惩罚项也纳入考虑,并最终选择使得代价函数和惩罚项的值较小一些的 θ \theta θ。修改后的代价函数如下:
min ⁡ θ [ 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + 1000 θ 3 3 + 10000 θ 4 4 ] \min_{\theta} \bigg[\frac{1}{2m} \sum_{i=1}^m \bigg(h_{\theta}(x^{(i)})- y^{(i)}\bigg)^2 + 1000\theta_3^3 + 10000\theta_4^4 \bigg] θmin[2m1i=1m(hθ(x(i))y(i))2+1000θ33+10000θ44]
通过这样的代价函数选择出的 θ 3 \theta_3 θ3 θ 4 \theta_4 θ4 对预测结果的影响就比之前要小许多。假如我们有非常多的特征,我们并不知道要乘法其中的哪些特征,这个时候我们可以对所有的特征进行惩罚,让代价函数最优化的程序来选择对这些特征惩罚的程度。于是我们就得到了一个较为简单的能防止过拟合问题的假设:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 J(\theta) = \frac{1}{2m} \sum_{i=1}^m \bigg(h_{\theta}(x^{(i)})- y^{(i)}\bigg)^2 + \lambda \sum_{j=1}^n \theta_{j}^2 J(θ)=2m1i=1m(hθ(x(i))y(i))2+λj=1nθj2
其中 λ \lambda λ 又被称为正则化参数Regularization Parameter )。注:根据惯例,我们不对 θ 0 \theta_0 θ0 进行惩罚。经过正则化处理的模型与原模型的可能对比如下图所示:
3
如果选择的正则化参数 λ \lambda λ 的值过大,则会把所有的参数都最小化了,导致模型变成 h θ ( x ) = θ 0 h_{\theta}(x) = \theta_0 hθ(x)=θ0 ,也就是上图中红色直线所示的情况,造成欠拟合。那为什么增加的一项 λ ∑ j = 1 n θ j 2 \lambda \sum_{j=1}^n \theta_{j}^2 λj=1nθj2 可以使 θ \theta θ 的值减小呢?因为如果我们令 λ \lambda λ 的值很大的话,为了使 Cost Function 尽可能的小,所有的 θ \theta θ 的值(不包括 θ 0 \theta_0 θ0 )都会在一定程度上减小。但若 λ \lambda λ 的值太大了,那么 θ \theta θ (不包括 θ 0 \theta_0 θ0 )都会趋近于 0,这样我们所得到的只能是一条平行于 x x x 轴的直线。所以对于正则化,我们要取一个合理的 λ \lambda λ 的值,这样才能更好的应用正则化。为了使用正则化,接下来我们回顾一下代价函数,把这些概念应用到到线性回归和逻辑回归中去,这样我们就可以让他们减缓过度拟合带来的问题。

1.3 正则化线性回归

对于线性回归的求解,我们之前推导了两种学习算法:一种基于梯度下降,一种基于正规方程。

正则化线性回归的代价函数为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 J(\theta) = \frac{1}{2m} \sum_{i=1}^m \bigg(h_{\theta}(x^{(i)})- y^{(i)}\bigg)^2 + \lambda \sum_{j=1}^n \theta_{j}^2 J(θ)=2m1i=1m(hθ(x(i))y(i))2+λj=1nθj2
如果我们要使用梯度下降法令这个代价函数最小化,因为我们未对 θ 0 \theta_0 θ0 进行正则化,所以梯度下降算法将分两种情形:
repeat until convergence { \text{repeat until convergence \{} repeat until convergence {
θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) , \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \bigg(h_{\theta}(x^{(i)}) - y^{(i)}\bigg)x_{0}^{(i)}, θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i),
θ j : = θ j − α [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ m θ j ] , \theta_j := \theta_j - \alpha \bigg[\frac{1}{m} \sum_{i=1}^m \bigg(h_{\theta}(x^{(i)}) - y^{(i)}\bigg)x_{j}^{(i)} + \frac{\lambda}{m} \theta_j \bigg], θj:=θjα[m1i=1m(hθ(x(i))y(i))xj(i)+mλθj],
for  j = 1 , 2 , . . . , n  } \text{for $j = 1, 2, ..., n$ \}} for j=1,2,...,n }
对上面的算法中 j = 1 , 2 , . . . , n j = 1, 2, ..., n j=1,2,...,n 时的更新式子进行调整可得:
θ j : = θ j ( 1 − α λ m ) − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m \bigg(h_{\theta}(x^{(i)}) - y^{(i)}\bigg)x_{j}^{(i)} θj:=θj(1αmλ)αm1i=1m(hθ(x(i))y(i))xj(i)
可以看出,正则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令 θ \theta θ 值减少了一个额外的值

1.4 正则化的逻辑回归模型

针对逻辑回归问题,我们在之前已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数 J ( θ ) J(\theta) J(θ) ,接下来学习了更高级的优化算法,这些高级优化算法需要你自己设计代价函数 J ( θ ) J(\theta) J(θ)

4
同样对于逻辑回归,我们也给代价函数增加一个正则化的表达式,得到代价函数:
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) l o g ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J(\theta) = -\frac{1}{m} \sum_{i=1}^m [y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))] + \frac{\lambda}{2m} \sum_{j=1}^n \theta_{j}^2 J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]+2mλj=1nθj2
使用Python代码实现如下:

def LR_cost_with_reg(theta, X, y, Learning_rate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    y0 = np.mutiply(-y, np.log(fn_sigmoid(X * theta.T)))
    y1 = np.mutiply(-(1 - y), np.log(1 - fn_sigmoid(X * theta.T)))
    reg = np.multiply(Learning_rate/(2 * len(X)), np.sum(np.power(theta[:, 1:theta.shape[1]], 2)))
    return np.sum(y0 + y1) / len(X) + reg  

要最小化该代价函数,通过求导,得出梯度下降算法为:
repeat until convergence { \text{repeat until convergence \{} repeat until convergence {
θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) , \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \bigg(h_{\theta}(x^{(i)}) - y^{(i)}\bigg)x_{0}^{(i)}, θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i),
θ j : = θ j − α [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ m θ j ] , \theta_j := \theta_j - \alpha \bigg[\frac{1}{m} \sum_{i=1}^m \bigg(h_{\theta}(x^{(i)}) - y^{(i)}\bigg)x_{j}^{(i)} + \frac{\lambda}{m} \theta_j \bigg], θj:=θjα[m1i=1m(hθ(x(i))y(i))xj(i)+mλθj],
for  j = 1 , 2 , . . . , n  } \text{for $j = 1, 2, ..., n$ \}} for j=1,2,...,n }

虽然正则化的逻辑回归中的梯度下降和正则化的线性回归中的表达式看起来一样,但由于两者的 h θ ( x ) h_{\theta}(x) hθ(x) 不同(一个是多项式回归,一个是通过逻辑函数对多项式回归的结果做映射)所以还是有很大差别。而且 θ 0 \theta_0 θ0 不参与其中的任何一个正则化。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值