SVC的模型评估指标
混淆矩阵混淆矩阵是二分类问题的多维衡量指标体系,在样本不平衡时极其有用。在混淆矩阵中,我们将少数类认为是正 例,多数类认为是负例。在决策树,随机森林这些普通的分类算法里,即是说少数类是1,多数类是0。在SVM里, 就是说少数类是1,多数类是-1。普通的混淆矩阵,一般使用{0,1}来表示。混淆矩阵中,永远是真实值在前,预测值在后。其实可以很容易看出,11和00的对角线就是全部预测正确的,01 和10的对角线就是全部预测错误的。模型整体效果:准确率准确率Accuracy就是所有预测正确的





