主成分分析(PCA)的原理

前言

主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。

一、PCA的思想

PCA 顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据。具体的,假如我们的数据集是 n n n 维的,共有 m m m 个数据 ( x ( 1 ) , x ( 2 ) , . . . , x ( m ) ) (x^{(1)}, x^{(2)}, ..., x^{(m)}) (x(1),x(2),...,x(m)) 。我们希望将这 m m m 个数据的维度从 n n n 维降到 n ′ n' n 维,希望这 m m m n ′ n' n 维的数据集尽可能的代表原始数据集。我们知道数据从 n n n 维降到 n ′ n' n 维肯定会有损失,但是我们希望损失尽可能的小。那么如何让这 n ′ n' n 维的数据尽可能表示原来的数据呢?

我们先看看最简单的情况,也就是 n = 2 , n ′ = 1 n=2,n'=1 n=2n=1 ,即将数据从二维降维到一维。如下图所示。我们希望找到某一个维度方向,它可以代表这两个维度的数据。图中列了两个向量方向, u 1 u_1 u1 u 2 u_2 u2 ,那么哪个向量可以更好的代表原始数据集呢?从直观上也可以看出, u 1 u_1 u1 u 2 u_2 u2 好。
1
为什么 u 1 u_1 u1 u 2 u_2 u2 好呢?可以有两种解释,第一种解释是样本点到这个直线(向量)的距离足够近,第二种解释是样本点在这个直线上的投影能尽可能的分开。

假如我们把 n ′ n' n 1 1 1 维推广到任意维,则我们希望的降维的标准为:样本点到这个超平面的距离足够近,或者说样本点在这个超平面上的投影能尽可能的分开

基于上面的两种标准,我们可以得到PCA的两种等价推导。

二、PCA的推导:基于最小投影距离

我们首先看第一种解释的推导,即样本点到这个超平面的距离足够近

假设 m m m n n n 维数据 ( x ( 1 ) , x ( 2 ) , . . . , x ( m ) ) (x^{(1)}, x^{(2)}, ..., x^{(m)}) (x(1),x(2),...,x(m)) 都已经进行了中心化(使用原始数据减去原始数据的均值,得到的数据即为中心化后的数据,几何意义是将原始数据做了一个平移,平移之后数据的中心是(0, 0)),即 Σ i = 1 m x ( i ) = 0 \Sigma_{i=1}^m x^{(i)} = 0 Σi=1mx(i)=0 。经过投影变换后得到的新坐标系为 { w 1 , w 2 , . . . , w n } \{w_1, w_2, ..., w_n\} {w1,w2,...,wn} ,其中 w w w 是标准正交基,即 ∣ ∣ w ∣ ∣ 2 = 1 , w i T w j = 0 ||w||_2 = 1, w^T_i w_j = 0 w2=1,wiTwj=0

如果我们将数据从 n n n 维降到 n ′ n' n 维,即丢弃新坐标系中的部分坐标,则新的坐标系为 { w 1 , w 2 , . . . , w n ′ } \{w_1, w_2, ..., w_{n'}\} {w1,w2,...,wn} ,样本点 x ( i ) x^{(i)} x(i) n ′ n' n 维坐标系中的投影为: z ( i ) = ( z 1 ( i ) , z 2 ( i ) , . . . , z n ′ ( i ) ) T z^{(i)} = (z^{(i)}_1, z^{(i)}_2, ..., z^{(i)}_{n'})^T z(i)=(z1(i),z2(i),...,zn(i))T 。其中, z j ( i ) = w j T x ( i ) z^{(i)}_j = w^T_jx^{(i)} zj(i)=wjTx(i) x ( i ) x^{(i)} x(i) 在低维坐标系里第 j j j 维的坐标。

如果我们用 z ( i ) z^{(i)} z(i) 来恢复原始数据 x ( i ) x^{(i)} x(i) ,则得到的恢复数据 x ‾ ( i ) = ∑ j = 1 n ′ z j ( i ) w j = W z ( i ) \overline{x}^{(i)} = \sum_{j=1}^{n'} z^{(i)}_jw_j = Wz^{(i)} x(i)=j=1nzj(i)wj=Wz(i),其中, W W W 为标准正交基组成的矩阵。

现在我们考虑整个样本集,我们希望所有的样本到这个超平面的距离足够近,即最小化下式:
∑ i = 1 m ∣ ∣ x ‾ ( i ) − x ( i ) ∣ ∣ 2 2 \sum_{i=1}^m ||\overline{x}^{(i)} - x^{(i)}||_2^2 i=1mx(i)x(i)22
将这个式子进行整理,可以得到:
∑ i = 1 m ∣ ∣ x ‾ ( i ) − x ( i ) ∣ ∣ 2 2 = ∑ i = 1 m ∣ ∣ W z ( i ) − x ( i ) ∣ ∣ 2 2 ⋯ ⋯   ① \sum_{i=1}^m ||\overline{x}^{(i)} - x^{(i)}||_2^2 = \sum_{i=1}^m ||Wz^{(i)} - x^{(i)}||_2^2 \quad \quad \text{$\cdots \cdots$①} i=1mx(i)x(i)22=i=1mWz(i)x(i)22
= ∑ i = 1 m ( W z ( i ) ) T ( W z ( i ) ) − 2 ∑ i = 1 m ( W z ( i ) ) T x ( i ) + ∑ i = 1 m ( x ( i ) ) T x ( i ) ⋯ ⋯   ② = \sum_{i=1}^m (Wz^{(i)})^T(Wz^{(i)}) - 2\sum_{i=1}^m (Wz^{(i)})^T x^{(i)} + \sum_{i=1}^m (x^{(i)})^T x^{(i)} \quad \quad \text{$\cdots \cdots$②} =i=1m(Wz(i))T(Wz(i))2i=1m(Wz(i))Tx(i)+i=1m(x(i))Tx(i)
= ∑ i = 1 m ( z ( i ) ) T z ( i ) − 2 ∑ i = 1 m ( z ( i ) ) T W T x ( i ) + ∑ i = 1 m ( x ( i ) ) T x ( i ) ⋯ ⋯   ③ = \sum_{i=1}^m (z^{(i)})^T z^{(i)} - 2\sum_{i=1}^m (z^{(i)})^T W^T x^{(i)} + \sum_{i=1}^m (x^{(i)})^T x^{(i)} \quad \quad \text{$\cdots \cdots$③} =i=1m(z(i))Tz(i)2i=1m(z(i))TWTx(i)+i=1m(x(i))Tx(i)
= ∑ i = 1 m ( z ( i ) ) T z ( i ) − 2 ∑ i = 1 m ( z ( i ) ) T z ( i ) + ∑ i = 1 m ( x ( i ) ) T x ( i ) ⋯ ⋯   ④ = \sum_{i=1}^m (z^{(i)})^T z^{(i)} - 2\sum_{i=1}^m (z^{(i)})^T z^{(i)} + \sum_{i=1}^m (x^{(i)})^T x^{(i)} \quad \quad \text{$\cdots \cdots$④} =i=1m(z(i))Tz(i)2i=1m(z(i))Tz(i)+i=1m(x(i))Tx(i)
= − ∑ i = 1 m ( z ( i ) ) T ( z ( i ) ) + ∑ i = 1 m ( x ( i ) ) T x ( i ) ⋯ ⋯   ⑤ = -\sum_{i=1}^m (z^{(i)})^T(z^{(i)}) + \sum_{i=1}^m (x^{(i)})^T x^{(i)} \quad \quad \text{$\cdots \cdots$⑤} =i=1m(z(i))T(z(i))+i=1m(x(i))Tx(i)
= − ∑ i = 1 m t r ( ( z ( i ) ) ( z ( i ) ) T ) + ∑ i = 1 m ( x ( i ) ) T x ( i ) ⋯ ⋯   ⑥ = -\sum_{i=1}^m tr\bigl((z^{(i)})(z^{(i)})^T\bigl) + \sum_{i=1}^m (x^{(i)})^T x^{(i)} \quad \quad \text{$\cdots \cdots$⑥} =i=1mtr((z(i))(z(i))T)+i=1m(x(i))Tx(i)
= − t r ( W T ( ∑ i = 1 m x ( i ) ( x ( i ) ) T ) W ) + ∑ i = 1 m ( x ( i ) ) T x ( i ) ⋯ ⋯   ⑦ = -tr\bigg(W^T\bigl(\sum_{i=1}^m x^{(i)} (x^{(i)})^T\bigr)W\bigg) + \sum_{i=1}^m (x^{(i)})^T x^{(i)} \quad \quad \text{$\cdots \cdots$⑦} =tr(WT(i=1mx(i)(x(i))T)W)+i=1m(x(i))Tx(i)
= − t r ( W T X X T W ) + ∑ i = 1 m ( x ( i ) ) T x ( i ) ⋯ ⋯   ⑧ = -tr(W^TXX^TW) + \sum_{i=1}^m (x^{(i)})^T x^{(i)} \quad \quad \text{$\cdots \cdots$⑧} =tr(WTXXTW)+i=1m(x(i))Tx(i)
其中:

第①步用到了 x ‾ ( i ) = W z ( i ) \overline{x}^{(i)} = Wz^{(i)} x(i)=Wz(i)

第②步用到了平方和展开式;

第③步用到了矩阵转置公式 ( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT W T W = I W^TW = I WTW=I

第④步用到了 z ( i ) = W T x ( i ) z^{(i)} = W^Tx^{(i)} z(i)=WTx(i)

第⑤步合并同类项;

第⑥步用到了向量 z ( i ) z^{(i)} z(i) 的内积等于矩阵 ( z ( i ) ) ( z ( i ) ) T (z^{(i)})(z^{(i)})^T (z(i))(z(i))T 的迹;

第⑦步用到了 z ( i ) = W T x ( i ) z^{(i)} = W^Tx^{(i)} z(i)=WTx(i)

第⑧步用到了 ∑ i = 1 m x ( i ) ( x ( i ) ) T = X X T \sum_{i=1}^m x^{(i)} (x^{(i)})^T = XX^T i=1mx(i)(x(i))T=XXT ,其中 X X X 为特征值矩阵。

注意到第⑦步中 ∑ i = 1 m x ( i ) ( x ( i ) ) T \sum_{i=1}^m x^{(i)}(x^{(i)})^T i=1mx(i)(x(i))T 是数据集的特征间的协方差矩阵, W W W 的每一个向量 w j w_j wj 是标准正交基。而 ∑ i = 1 m ( x ( i ) ) T x ( i ) \sum_{i=1}^m (x^{(i)})^T x^{(i)} i=1m(x(i))Tx(i) 是一个常量。最小化上式等价于:
arg ⁡ min ⁡ ⏟ W    − t r ( W T X X T W ) subject to  W T W = I \underbrace{\arg \min}_W \; -tr(W^TXX^TW) \quad \quad \text{subject to $W^TW = I$} W argmintr(WTXXTW)subject to WTW=I
这个最小化不难,直接观察也可以发现最小值对应的 W W W 由协方差矩阵 X X T XX^T XXT 最大的 n ′ n' n 个特征值对应的特征向量组成。当然用数学推导也很容易。利用拉格朗日函数可以得到:
J ( W ) = − t r ( W T X X T W ) + λ ( W T W − I ) J(W) = -tr(W^TXX^TW) + \lambda (W^TW - I) J(W)=tr(WTXXTW)+λ(WTWI)
W W W 求导有 − X X T W + λ W = 0 −XX^TW + \lambda W = 0 XXTW+λW=0 ,整理后得:
X X T W = λ W XX^TW = \lambda W XXTW=λW
这样可以更清楚的看出, W W W X X T XX^T XXT n ′ n' n 个特征向量组成的矩阵,而 λ \lambda λ X X T XX^T XXT 的若干特征值组成的矩阵,特征值在主对角线上,其余位置为 0 0 0 。当我们将数据集从 n n n 维降到 n ′ n' n 维时,需要找到最大的 n ′ n' n 个特征值对应的特征向量。这 n ′ n' n 个特征向量组成的矩阵 W W W 即为我们需要的矩阵。对于原始数据集,我们只需要用 z ( i ) = W T x ( i ) z^{(i)} = W^Tx^{(i)} z(i)=WTx(i) ,就可以把原始数据集降维到最小投影距离的 n ′ n' n 维数据集。

从这里我们就可以看出来PCA是求前k个最大的特征值对应的特征向量。

三、PCA的推导:基于最大投影方差

假设 m m m n n n 维数据 ( x ( 1 ) , x ( 2 ) , . . . , x ( m ) ) (x^{(1)}, x^{(2)}, ..., x^{(m)}) (x(1),x(2),...,x(m)) 都已经进行了中心化,即 ∑ i = 1 m x ( i ) = 0 \sum_{i=1}^m x^{(i)} = 0 i=1mx(i)=0 。经过投影变换后得到的新坐标系为 { w 1 , w 2 , . . . , w n } \{w_1, w_2, ..., w_n\} {w1,w2,...,wn} ,其中 w w w 是标准正交基,即 ∣ ∣ w ∣ ∣ 2 = 1 , w i T w j = 0 ||w||_2=1, w^T_iw_j = 0 w2=1,wiTwj=0

如果我们将数据从 n n n 维降到 n ′ n' n 维,即丢弃新坐标系中的部分坐标,则新的坐标系为 w 1 , w 2 , . . . , w n ′ {w_1, w_2, ..., w_{n'}} w1,w2,...,wn ,样本点 x ( i ) x^{(i)} x(i) n ′ n' n 维坐标系中的投影为: z ( i ) = ( z 1 ( i ) , z 2 ( i ) , . . . , z n ′ ( i ) ) T z(i)=(z^{(i)}_1, z^{(i)}_2, ..., z^{(i)}_{n'})^T z(i)=(z1(i),z2(i),...,zn(i))T 。其中, z j ( i ) = w j T x ( i ) z^{(i)}_j = w^T_jx^{(i)} zj(i)=wjTx(i) x ( i ) x^{(i)} x(i) 在低维坐标系里第 j j j 维的坐标。

对于任意一个样本 x ( i ) x^{(i)} x(i),在新的坐标系中的投影为 W T x ( i ) W^Tx^{(i)} WTx(i) ,在新坐标系中的投影方差为 W T x ( i ) ( x ( i ) ) T W W^Tx^{(i)}(x^{(i)})^TW WTx(i)(x(i))TW ,要使所有的样本的投影方差和最大,也就是最大化 ∑ i = 1 m W T x ( i ) ( x ( i ) ) T W \sum_{i=1}^m W^Tx^{(i)}(x^{(i)})^TW i=1mWTx(i)(x(i))TW 的迹,即:
arg ⁡ max ⁡ ⏟ W    t r ( W T X X T W ) subject to  W T W = I \underbrace{\arg \max}_W \; tr(W^TXX^TW) \quad \quad \text{subject to $W^TW = I$} W argmaxtr(WTXXTW)subject to WTW=I
观察第二小节的基于最小投影距离的优化目标,可以发现完全一样,只是一个是加负号的最小化,一个是最大化。

我们利用拉格朗日函数可以得到:
J ( W ) = t r ( W T X X T W ) + λ ( W T W − I ) J(W) = tr(W^TXX^TW) + \lambda (W^TW - I) J(W)=tr(WTXXTW)+λ(WTWI)
W W W 求导有 X X T W + λ W = 0 XX^TW + \lambda W = 0 XXTW+λW=0 ,整理后得:
X X T W = ( − λ ) W XX^TW = (-\lambda) W XXTW=(λ)W
和上面一样可以看出, W W W X X T XX^T XXT n ′ n' n 个特征向量组成的矩阵,而 − λ −\lambda λ X X T XX^T XXT 的若干特征值组成的矩阵,特征值在主对角线上,其余位置为 0 0 0 。当我们将数据集从 n n n 维降到 n ′ n' n 维时,需要找到最大的 n ′ n' n 个特征值对应的特征向量。这 n ′ n' n 个特征向量组成的矩阵 W W W 即为我们需要的矩阵。对于原始数据集,我们只需要用 z ( i ) = W T x ( i ) z^{(i)} = W^Tx^{(i)} z(i)=WTx(i),就可以把原始数据集降维到最小投影距离的 n ′ n' n 维数据集。

四、PCA算法流程

从上面两小节我们可以看出,求样本 x ( i ) x^{(i)} x(i) n ′ n' n 维的主成分其实就是求样本集的协方差矩阵 X X T XX^T XXT 的前 n ′ n' n 个特征值对应的特征向量矩阵 W W W ,然后对于每个样本 x ( i ) x^{(i)} x(i),做如下变换 z ( i ) = W T x ( i ) z^{(i)} = W^Tx^{(i)} z(i)=WTx(i),即达到PCA的降维目的。

下面我们看看具体的算法实现流程。

输入: n n n 维样本集 D = ( x ( 1 ) , x ( 2 ) , . . . , x ( m ) ) D = (x^{(1)}, x^{(2)}, ..., x^{(m)}) D=(x(1),x(2),...,x(m)) ,要降维到的维数 n ′ n' n

输出:降维后的样本集 D ′ D' D

  • ① 对所有的样本进行中心化: x ( i ) = x ( i ) − 1 m ∑ j = 1 m x ( j ) x^{(i)} = x^{(i)} − \frac{1}{m}\sum_{j=1}^m x^{(j)} x(i)=x(i)m1j=1mx(j)

  • ② 计算样本的协方差矩阵 X X T XX^T XXT

  • ③ 对矩阵 X X T XX^T XXT 进行特征值分解;

  • ④ 取出最大的 n ′ n' n 个特征值对应的特征向量 ( w 1 , w 2 , . . . , w n ′ ) (w_1, w_2, ..., w_{n'}) (w1,w2,...,wn), 将所有的特征向量标准化后,组成特征向量矩阵 W W W

  • ⑤ 对样本集中的每一个样本 x ( i ) x^{(i)} x(i),转化为新的样本 z ( i ) = W T x ( i ) z^{(i)} = W^Tx^{(i)} z(i)=WTx(i)

  • ⑥ 得到输出样本集 D ′ = ( z ( 1 ) , z ( 2 ) , . . . , z ( m ) ) D' = (z^{(1)}, z^{(2)}, ..., z^{(m)}) D=(z(1),z(2),...,z(m))

有些时候,我们不指定降维后的 n ′ n' n 的值,而是换种方式,指定一个降维到的主成分比重阈值 t 。这个阈值 t t t(0,1] 之间。假如我们的 n n n 个特征值为 λ 1 ≥ λ 2 ≥ . . . ≥ λ n \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n λ1λ2...λn ,则 t t t 可以通过下式得到:
t ≤ ∑ i = 1 n ′ λ i ∑ i = 1 n λ i t \leq \frac{\sum_{i=1}^{n'} \lambda_i}{\sum_{i=1}^{n} \lambda_i} ti=1nλii=1nλi

五、PCA实例

下面举一个简单的例子,说明PCA的实现过程。

假设我们的数据集有 10 个二维数据(2.5, 2.4), (0.5, 0.7), (2.2, 2.9), (1.9, 2.2), (3.1, 3.0), (2.3, 2.7), (2, 1.6), (1, 1.1), (1.5, 1.6), (1.1, 0.9),需要将它们用PCA降到1维特征。

首先我们对样本中心化,这里样本的均值为 (1.81, 1.91),所有的样本减去这个均值向量后,即中心化后的数据集为 (0.69, 0.49), (-1.31, -1.21), (0.39, 0.99), (0.09, 0.29), (1.29, 1.09), (0.49, 0.79), (0.19, -0.31), (-0.81, -0.81), (-0.31, -0.31), (-0.71, -1.01)

现在我们开始求样本的协方差矩阵,由于我们是二维的,则协方差矩阵为:
X X T = ( c o v ( x 1 , x 1 ) c o v ( x 1 , x 2 ) c o v ( x 2 , x 1 ) c o v ( x 2 , x 2 ) ) XX^T = \begin{pmatrix} cov(x_1, x_1) & cov(x_1, x_2) \\ cov(x_2, x_1) & cov(x_2, x_2) \end{pmatrix} XXT=(cov(x1,x1)cov(x2,x1)cov(x1,x2)cov(x2,x2))
对于我们的数据源,求出协方差矩阵为:
X X T = ( 0.616555556 0.615444444 0.615444444 0.716555556 ) XX^T = \begin{pmatrix} 0.616555556 & 0.615444444 \\ 0.615444444 & 0.716555556 \end{pmatrix} XXT=(0.6165555560.6154444440.6154444440.716555556)
求出特征值为 (0.0490833989, 1.28402771) ,对应的特征向量分别为: ( 0.735178656 , 0.677873399 ) T , ( − 0.677873399 , − 0.735178656 ) T (0.735178656, 0.677873399)^T, (−0.677873399, −0.735178656)^T (0.735178656,0.677873399)T,(0.677873399,0.735178656)T ,由于最大的 k = 1 k=1 k=1 个特征值为 1.28402771 ,对应的前 k = 1 k=1 k=1 个特征向量为 ( − 0.677873399 , − 0.735178656 ) T (−0.677873399, −0.735178656)^T (0.677873399,0.735178656)T ,则我们的 w = ( − 0.677873399 , − 0.735178656 ) T w = (−0.677873399, −0.735178656)^T w=(0.677873399,0.735178656)T

我们对所有的数据集进行投影 z ( i ) = W T x ( i ) z^{(i)} = W^Tx^{(i)} z(i)=WTx(i) ,得到PCA降维后的10个一维数据集为:(-0.827970186, 1.77758033, -0.992197494, -0.274210416, -1.67580142, -0.912949103, 0.0991094375, 1.14457216, 0.438046137, 1.22382056)

六、核主成分分析KPCA介绍

在上面的PCA算法中,我们假设存在一个线性的超平面,可以让我们对数据进行投影。但是有些时候,数据不是线性的,不能直接进行PCA降维。这里就需要用到和支持向量机一样的核函数的思想,先把数据集从 n 维映射到线性可分的高维 N > n N\gt n N>n ,然后再从 N 维降维到一个低维度 n' , 这里的维度之间满足 n ′ < n < N n' \lt n \lt N n<n<N

使用了核函数的主成分分析一般称之为核主成分分析(Kernelized PCA,以下简称KPCA)。假设高维空间的数据是由 n 维空间的数据通过映射 ϕ \phi ϕ 产生。

则对于 n 维空间的特征分解:
∑ i = 1 m x ( i ) ( x ( i ) ) T W = λ W \sum_{i=1}^m x^{(i)}(x^{(i)})^TW = \lambda W i=1mx(i)(x(i))TW=λW
映射为:
∑ i = 1 m ϕ ( x ( i ) ) ϕ ( x ( i ) ) T W = λ W \sum_{i=1}^m \phi(x^{(i)})\phi(x^{(i)})^TW = \lambda W i=1mϕ(x(i))ϕ(x(i))TW=λW
通过在高维空间进行协方差矩阵的特征值分解,然后用和PCA一样的方法进行降维。一般来说,映射 ϕ \phi ϕ 不用显式的计算,而是在需要计算的时候通过核函数完成。由于KPCA需要核函数的运算,因此它的计算量要比PCA大很多

七、总结

作为一个非监督学习的降维方法,PCA只需要将特征值分解,就可以对数据进行压缩,去噪。因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种方法,比如第六小节中的为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的Sparse PCA等。

PCA算法的主要优点有:

  • ① 仅仅需要用方差来衡量数据包含的信息量,不受数据集以外的因素影响。

  • ② 各主成分之间正交,可消除原始数据成分间的相互影响的因素。

  • ③ 计算方法简单,主要运算是特征值分解,易于实现。

主要缺点有:

  • ① 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。

  • ② 方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃后可能对后续数据处理有影响。

八、参考文献

主成分分析(PCA)原理总结 - 刘建平
机器学习中的数学(2) – 矩阵中心化、标准化的意义和作用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值