使用递归的思想完成汉诺塔游戏(Python实现)

前言

关于汉诺塔的问题我是在看一道面试题时发现它的存在的,不得不说这个东西值得花时间去研究研究,因为当时看完面试题的需求之后我是百脸懵逼的状态!!!
111

正文

首先这是百度百科关于汉诺塔的内容:

法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。
印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。
不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。
僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

事实上如果我们考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序。 那么这需要多少次移动呢?
这里需要递归的方法。
假设有n片,移动次数是 f ( n ) f(n) f(n) 。显然 f ( 1 ) = 1 , f ( 2 ) = 3 , f ( 3 ) = 7 f(1)=1,f(2)=3,f(3)=7 f(1)=1f(2)=3f(3)=7 ,且 f ( k + 1 ) = 2 ∗ f ( k ) + 1 f(k+1)=2*f(k)+1 f(k+1)=2f(k)+1
此后不难证明 f ( n ) = 2 n − 1 f(n)=2^n - 1 f(n)=2n1 n = 64 n=64 n=64 时,假如每秒钟移动一次,共需花费多长时间呢?
一个平年365天有31536000秒,闰年366天有31622400秒,平均每年31556952秒,计算一下:
18446744073709551615秒!!!

这表明移完这些金片需要5845.54亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。真的过了5845.54亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。

题干要求

首先有3个柱子(A B C) A A A 柱子有 N N N 个圆盘,假如我们把圆盘按照从上至下用 L 1 L_1 L1 L n L_n Ln 来表示,要将 A A A 中所有圆盘移动到其他柱子中去,每次只能移动一个圆盘,一共需要几步(或者打印出每一步圆盘的移动轨迹,比如说从A盘移动到C盘用’A —> C’来表示)。
规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

我们先来看一下少量的圆盘移动的过程

假如 n = 1 n=1 n=1 则圆盘为 L 1 L1 L1 ,只需将圆盘从 A → C A→C AC ,共一步。
222
333

假如 n = 2 n=2 n=2 则圆盘为 L 1 , L 2 L1,L2 L1,L2 ,则需要将先将 L 1 L1 L1 A → C A→C AC ,然后将 L 2 L2 L2 A → B A→B AB ,最后将 L 1 L1 L1 C → B C→B CB ,共3步。
444
555
666

假如 n = 3 n=3 n=3 则圆盘为 L 1 , L 2 , L 3 L1,L2,L3 L1,L2,L3 ,先将 L 1 L1 L1 A → C A→C AC ,然后将 L 2 L2 L2 A → B A→B AB L 1 L1 L1 C → B C→B CB ,然后将 L 3 L3 L3 A → C A→C AC ,然后将 L 1 L1 L1 B → A B→A BA ,将 L 2 L2 L2 B → C B→C BC ,再将 A → C A→C AC ,共7步。
777
888
999
11111
22222
这里为了节约篇幅,上图中有些图里面实际上是走了两步,比较简单,请各位读者们自行分解一下步骤。

那么推广到N个圆盘呢?

上面只是一个简单的移动过程,根据图片很好去理解。

我们可以简单思考下:将所有盘片看成 L 1 − − − > L ( n − 1 ) L_1 ---> L_(n-1) L1>L(n1) L n L_n Ln 两个部分。如果有n个盘片需要移动,则我们可以做如下的步骤分解:

A)将前n-1个盘子从a移动到b上;
B)将最底下的最后一个盘子从a移动到c上;
C)将b上的n-1个盘子移动到c上。

实际上n-1个圆盘本身又是一个递归,一直可以分解成n=1为止。
33333
55555
66666

代码实现

使用递归的思想就是把这个目标分解成三个子目标:

  • 将前n-1个盘子从a移动到b上;
  • 将最底下的最后一个盘子从a移动到c上;
  • 将b上的n-1个盘子移动到c上。

然后每个子目标又是一次独立的汉诺塔游戏,也就可以继续分解目标直到N1

def move(n, a, b, c):  
	if n == 1:
		print(a, '-->', c)
	else:
		move(n-1, a, c, b)  # 子目标1
		move(1, a, b, c)  # 子目标2
		move(n-1, b, a, c)  # 子目标3

我们以n=3为例执行一下这个代码,带着大家熟悉一下这个过程:

# 调用此函数  
move(3, a, b, c)
# 开始从a上移动n-1即2个盘子通过c移动到b,以腾出c供a最后一个盘子移动
move(2, "a","c","b")
n=2:
# 开始进行n=2的一个递归,把当前a('a')柱上的n-1个盘子通过c('b')移动到b('c')
move(1, "a", "b", "c")
n=1:
# n=2的第一个递归完成,打印结果,执行当前子函数剩余代码
print("a", "->", "c") 
move(1, "a", "c", "b")
n=1:
print("a", "->", "b")
move(1, "c", "a", "b")
n=1:
print("c", "->", "b")
# 到这里完成了a柱上面的n-1即是2个盘子的移动
# 开始把a柱上最后一个盘子移动到c柱上
move(1, "a", "b", "c")
n=1:
print("a", "->", "c")
# 到这里完成移动a柱上的最后一个盘子到c柱上 
move(2, "b", "a", "c")
n=2:
# 开始进行n=2的第二个递归,即把当前b('b')的盘子(n-1个)通过a('a')移动到c('c')上
move(1, "b", "c", "a")
n=1:
# n=2 的第二个递归完成,打印结果并执行当前子函数的剩余代码
print("b", "->", "a")
move(1, "b", "a", "c")
n=1:
print("b", "->", "c")
move(1, "a", "b", "c")
n=1:
print("a", "->", "c")
# 到这里把b上的盘子通过a移动到c,整个代码执行完毕,汉诺塔移动完成  

总结

类似于这样的需要归纳证明的题目,最好还是先用简单的案例去实现一下过程,然后再归纳总结一般规律,扩展到问题规模为N的情况。不得不说,递归真的是一个好东西!!!

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值