斐波拉契数列的通项公式求解

在这里插入图片描述


斐波拉契数列中的每一项为前两项的和,取最开始两项为0、1,便可继续写出斐波拉契数列的后续项:0、1、1、2、3、5、8、13、21、34……

令斐波拉契数列中的项为 F k F_k Fk,可以写出数列的递推公式为( F 0 = 0 , F 1 = 1 F_0=0, F_1=1 F0=0,F1=1):
F k + 2 = F k + 1 + F k (1) F_{k+2} = F_{k+1} + F_{k} \tag{1} Fk+2=Fk+1+Fk(1)

这是一个二阶差分的形式,为了方便处理,我们通过定义新的向量 u k u_k uk将其转换为一阶差分形式:
u k = [ F k + 1 F k ] (2) u_k=\begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} \tag{2} uk=[Fk+1Fk](2)
递推公式便可写为:
[ F k + 2 F k + 1 ] = [ 1 1 1 0 ] [ F k + 1 F k ] (3) \begin{bmatrix} F_{k+2} \\ F_{k+1} \end{bmatrix} =\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} F_{k+1} \\ F_{k} \end{bmatrix} \tag{3} [Fk+2Fk+1]=[1110][Fk+1Fk](3)
u k + 1 = [ 1 1 1 0 ] u k (4) u_{k+1}=\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}u_k \tag{4} uk+1=[1110]uk(4)
其中 u 0 = [ 1 0 ] u_0=\begin{bmatrix}1\\0\end{bmatrix} u0=[10],令 A = [ 1 1 1 0 ] A=\begin{bmatrix}1 & 1\\1 &0\end{bmatrix} A=[1110],可以根据递推公式(4)写出数列的通项公式:
u k = A k u 0 (5) u_{k}=A^ku_0\tag{5} uk=Aku0(5)
对于矩阵 A A A,通过特征多项式 ∣ λ I − A ∣ = 0 |\lambda I-A|=0 λIA=0求得其特征值
λ 2 − λ − 1 = 0 ⇒ λ 1 = 1 + 5 2 , λ 2 = 1 − 5 2 (6) \lambda^2-\lambda-1=0 \Rightarrow \lambda_1=\frac{1+\sqrt{5}}{2},\lambda_2=\frac{1-\sqrt{5}}{2}\tag{6} λ2λ1=0λ1=21+5 λ2=215 (6)
对于特征值 λ \lambda λ来讲,已知下式成立:
( A − λ I ) [ λ 1 ] = [ 1 − λ 1 1 − λ ] [ λ 1 ] = [ λ − λ 2 + 1 0 ] = 0 (7) (A-\lambda I) \begin{bmatrix}\lambda\\1\end{bmatrix} =\begin{bmatrix} 1-\lambda & 1\\ 1 & -\lambda \end{bmatrix} \begin{bmatrix}\lambda\\1\end{bmatrix}= \begin{bmatrix}\lambda-\lambda^2+1\\0\end{bmatrix}=0\tag{7} (AλI)[λ1]=[1λ11λ][λ1]=[λλ2+10]=0(7)
所以对于各特征值 λ \lambda λ,对应的特征向量为 [ λ 1 ] \begin{bmatrix}\lambda\\1\end{bmatrix} [λ1],据此可将矩阵A进行对角化:
A = S Λ S − 1 = [ λ 1 λ 2 1 1 ] [ λ 1 0 0 λ 2 ] [ λ 1 λ 2 1 1 ] − 1 (8) A=S\Lambda S^{-1}=\begin{bmatrix}\lambda_1&\lambda_2\\1&1\end{bmatrix} \begin{bmatrix}\lambda_1 & 0\\0 & \lambda_2\end{bmatrix} \begin{bmatrix}\lambda_1&\lambda_2\\1&1\end{bmatrix}^{-1}\tag{8} A=SΛS1=[λ11λ21][λ100λ2][λ11λ21]1(8)
根据对角矩阵幂的性质,可以得到下式:
A k = S Λ k S − 1 = [ λ 1 λ 2 1 1 ] [ λ 1 k 0 0 λ 2 k ] [ λ 1 λ 2 1 1 ] − 1 (9) A^k=S\Lambda^k S^{-1}=\begin{bmatrix}\lambda_1&\lambda_2\\1&1\end{bmatrix} \begin{bmatrix}\lambda_1^k & 0\\0 & \lambda_2^k\end{bmatrix} \begin{bmatrix}\lambda_1&\lambda_2\\1&1\end{bmatrix}^{-1}\tag{9} Ak=SΛkS1=[λ11λ21][λ1k00λ2k][λ11λ21]1(9)
接着我们将初值 u 0 u_0 u0用特征向量的线性组合的方式表示,S为特征向量组成的矩阵
u 0 = [ 1 0 ] = c 1 [ λ 1 1 ] + c 2 [ λ 2 1 ] = [ λ 1 λ 2 1 1 ] [ c 1 c 2 ] = S C (10) u_0=\begin{bmatrix}1\\0\end{bmatrix}=c_1\begin{bmatrix}\lambda_1\\1\end{bmatrix}+c_2\begin{bmatrix}\lambda_2\\1\end{bmatrix}= \begin{bmatrix}\lambda_1&\lambda_2\\1&1\end{bmatrix} \begin{bmatrix}c_1\\c_2\end{bmatrix}=SC\tag{10} u0=[10]=c1[λ11]+c2[λ21]=[λ11λ21][c1c2]=SC(10)
λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的值由(6)式已知,解得 c 1 = 1 λ 1 − λ 2 = 1 5 、 c 2 = − 1 λ 1 − λ 2 = − 1 5 c_1=\frac{1}{\lambda_1-\lambda_2}=\frac{1}{\sqrt{5}}、c_2=-\frac{1}{\lambda_1-\lambda_2}=-\frac{1}{\sqrt{5}} c1=λ1λ21=5 1c2=λ1λ21=5 1,便可根据(5)(9)(10)式写出斐波拉契数列的通项公式:
u k = S Λ k S − 1 S C = S Λ k C = [ λ 1 λ 2 1 1 ] [ λ 1 k 0 0 λ 2 k ] [ c 1 c 2 ] = [ c 1 λ 1 k + 1 + c 2 λ 2 k + 1 c 1 λ 1 k + c 2 λ 2 k ] (11) u_k=S\Lambda^k S^{-1}SC=S\Lambda^kC=\begin{bmatrix}\lambda_1&\lambda_2\\1&1\end{bmatrix} \begin{bmatrix}\lambda_1^k & 0\\0 & \lambda_2^k\end{bmatrix} \begin{bmatrix}c_1\\c_2\end{bmatrix}= \begin{bmatrix} c_1\lambda_1^{k+1}+c_2\lambda_2^{k+1} \\ c_1\lambda_1^{k}+c_2\lambda_2^{k}\end{bmatrix} \tag{11} uk=SΛkS1SC=SΛkC=[λ11λ21][λ1k00λ2k][c1c2]=[c1λ1k+1+c2λ2k+1c1λ1k+c2λ2k](11)
容易根据(2)式得到最终 F k F_k Fk的通项公式为:
F k = c 1 λ 1 k + c 2 λ 2 k = 1 5 [ ( 1 + 5 2 ) k − ( 1 − 5 2 ) k ] (12) \boxed{F_k=c_1\lambda_1^{k}+c_2\lambda_2^{k}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^k-\left(\frac{1-\sqrt{5}}{2}\right)^k\right]}\tag{12} Fk=c1λ1k+c2λ2k=5 1 (21+5 )k(215 )k (12)
最后我们将其中根式的小数近似值带入得到:
F k ≈ 1 2.2 [ 1.61 8 k − ( − 0.618 ) k ] (13) F_k\approx\frac{1}{2.2}\left[ 1.618^k- \left( -0.618 \right)^k \right]\tag{13} Fk2.21[1.618k(0.618)k](13)
当k足够大的时候,后面那项 ( − 0.618 ) k \left( -0.618 \right)^k (0.618)k趋近于零,则通项公式可以近似为 F k ≈ 1.61 8 k 2.2 (14) F_k\approx\frac{1.618^k}{2.2}\tag{14} Fk2.21.618k(14)
其实该推导过程与我们在研究一个系统的稳定性有异曲同工之妙,特征值分析即将一个系统各部分解耦,其中 ∣ λ ∣ < 1 |\lambda|<1 λ<1的部分即为收敛部分,大于1则为发散部分,等于1即最终稳态呈现的部分。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值