-
概率为0的事件是不可能事件(错误)
-
袋子里有白球6个,黑球4个,依次抽取3个球,那么至少有2个是白球的概率为:
至少有2个是白球, 就是2个或者3个全是白球的组合: C 6 2 ∗ C 4 1 + C 6 3 C_6^2*C_4^1 + C_6^3 C62∗C41+C63 总的抽取组合为: C 10 3 C_{10}^3 C103
二者相除结果为: 2/3 -
在盛有号码 1 , 2 , 3 , . . . . N 1,2,3, ....N 1,2,3,....N的球的箱子里有放回的摸了n次球,依次记下号码,那么这些号码按照严格上升次序排列的概率为:
从中有放回的取n次球的所有排列的可能为: N n N^n Nn
按照升序(也就是说忽略顺序)的排列可能,就转化为了组合,即 C N n C_N^n CNn
那么概率就是: C N n N n \frac{C_N^n}{N^n} NnCNn -
袋子中装有1,2,…,n 号的球各一个,有放回地从中摸n 次球,第k 次摸球是摸到1 号球的概率为:
1 / n 1/n 1/n -
一个骰子投4 次至少得到一个六点的概率为:
投4次的所有点数的排列为: 6 4 6^4 64;
那么所有点数中没有六点的排列为: 5 4 5^4 54
答案为: 1 − 5 4 6 4 = 0.5177 1-\frac{5^4}{6^4} =0.5177 1−6454=0.5177 -
甲袋子中有4 个白球,2 个红球,4 个黑球,乙袋子中有2 个白球,5 个红球,3 个黑球,现从两袋中各取1 个球,那么两个球颜色不相同的概率是:
每个袋子中取1个球,所有的排列为: 1 0 2 10^2 102;
那么两个球颜色相同的排列为:都是白球或者都是红球或者都是黑球,即 4 ∗ 2 + 2 ∗ 5 + 4 ∗ 3 = 30 4*2+2*5+4*3=30 4∗2+2∗5+4∗3=30
所以颜色不同的概率为: ( 100 − 30 ) / 100 = 0.7 (100-30)/100=0.7 (100−30)/100=0.7 -
有一部五卷的文集,按任意次序放到书架上,那么第一卷和第五卷出现在最边上的概率是:
5本书总共的排列可能为: A 5 5 = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 A_5^5=5*4*3*2*1 A55=5∗4∗3∗2∗1;
第1,5卷放到两边,其余任意排列的可能为: A 2 2 ∗ A 3 3 A_2^2*A_3^3 A22∗A33
所以二者相除结果为: 0.1 0.1 0.1 -
若10 件产品中有3 件次品,现从中任取两件,在已知这两件中有一件不是次品的条件下,另外一件是次品的概率是:
正品和次品各1件的组合: C 7 1 ∗ C 3 1 = 21 C_7^1*C_3^1=21 C71∗C31=21;
排除两件都是次品的组合(因为已知1件是正品了)为: C 10 2 − C 3 2 = 42 C_{10}^2-C_3^2=42 C102−C32=42
二者相除结果为: 0.5 0.5 0.5 -
在炮战中,在距目标250 米,200 米,150 米处射击的概率分别为0.1,0.7,0.2,而
在各该处射击命中的概率为0.05,0.1,0.2,现在已知目标被击毁,那么击毁目标的炮弹是由250 米处射出的概率是:
假设事件A1:250米射击;B1:在250米处射击命中;A2:在200米处射击;B2:在200米处射击命中;A3:在150 米处射;B3:在150米处射击命中;那么有 :
P(A1)=0.1; P(A2)=0.7; P(A3)=0.2;
P(B1|A1)=0.05; P(B2|A2)=0.1; P(B2|A3)=0.2;
那么击中目标的概率为: P ( D ) = P ( A 1 , B 1 ) + P ( A 2 , B 2 ) + P ( A 3 , B 3 ) = 0.1 ∗ 0.05 + 0.7 ∗ 0.1 + 0.2 ∗ 0.2 = 0.115 P(D)=P(A1,B1)+P(A2,B2)+P(A3,B3)=0.1*0.05+0.7*0.1+0.2*0.2=0.115 P(D)=P(A1,B1)+P(A2,B2)+P(A3,B3)=0.1∗0.05+0.7∗0.1+0.2∗0.2=0.115;
三者互不相容: P ( D ) = P ( A 1 B 1 ∪ A 2 B 2 ∪ A 3 B 3 ) P(D)=P(A_1B_1\cup A_2B_2 \cup A_3B_3) P(D)=P(A1B1∪A2B2∪A3B3);
所以已知目标被击毁,那么击毁目标的炮弹是由250 米处射出的概率是:
P(A1|D)=P(A1,D)/P(D) = P(A1,B1)/P(D) = 0.0435; -
当元件A 发生故障或者元件B 及C 都发生故障的时候电路断开,元件A 发生故障的概率是0.3,而元件B,C 发生故障的概率各为0.2,求电路断开的概率:
这里A,B,C三个事件互相独立,可知:
求得: P ( A ∪ ( B C ) ) = P ( A ) + P ( B C ) − P ( A B C ) = P ( A ) + P ( B ) P ( C ) − P ( A ) P ( B ) P ( C ) = 0.3 + 0.04 − 0.012 = 0.0328 P(A\cup (BC))=P(A)+P(BC)-P(ABC)=P(A)+P(B)P(C)-P(A)P(B)P(C)=0.3+0.04-0.012=0.0328 P(A∪(BC))=P(A)+P(BC)−P(ABC)=P(A)+P(B)P(C)−P(A)P(B)P(C)=0.3+0.04−0.012=0.0328 -
从6双不同的手套中任取4只,问有且只有一双配对的概率是:
从6双(共12只)手套中任意取4只的组合为: C 12 4 C_{12}^4 C124;
假设只有一双配对的组合为: C 6 1 ∗ C 5 1 ∗ C 4 ∗ 2 1 C_6^1*C_5^1*C_{4*2}^1 C61∗C51∗C4∗21其中 C 6 1 C_6^1 C61表示从6双中任取1双的数量,那么这里就是取出了2只,作为仅有的一个配对;
剩下两只的取法就不能够有成对的手套出现,则从剩余的5对中取一只为 C 5 1 C_5^1 C51;
再从剩下的4对中取一只,也就是8只中取1只: C 4 ∗ 2 1 C_{4*2}^1 C4∗21;最后二者相除,结果为: 0.4848 0.4848 0.4848
-
送检的两批灯管在运算过程中各打碎了1只,若每批10只灯管,而第一批中有1只次品,第二批中有2只次品,现从剩下的灯管中任取1只,抽的次品的概率为:
分析打碎的两只灯管的所有可能情况如下:
A 1 A_1 A1事件表示两次打碎的都是次品,那么 P ( A 1 ) = 1 10 ∗ 2 10 P(A_1)=\frac{1}{10}*\frac{2}{10} P(A1)=101∗102;
A 2 A_2 A2事件表示第一次打碎的是次品,第二次则是好的,那么 P ( A 2 ) = 1 10 ∗ 8 10 P(A_2)=\frac{1}{10}*\frac{8}{10} P(A2)=101∗108;
A 3 A_3 A3事件表示第一次打碎的是好的,第二次则是次品,那么 P ( A 3 ) = 9 10 ∗ 2 10 P(A_3)=\frac{9}{10}*\frac{2}{10} P(A3)=109∗102;
A 4 A_4 A4事件表示两次打碎的都是好的,那么 P ( A 4 ) = 9 10 ∗ 8 10 P(A_4)=\frac{9}{10}*\frac{8}{10} P(A4)=109∗108;
B B B事件表示抽到次品的概率;
P ( B ∣ A 1 ) = 1 18 P(B|A_1)=\frac{1}{18} P(B∣A1)=181,在两次打碎的都是次品的条件下,抽到次品的概率;
P ( B ∣ A 2 ) = 2 18 P(B|A_2)=\frac{2}{18} P(B∣A2)=182,在第一次打碎的是次品,第二次打碎的是好的条件下,抽到次品的概率;
P ( B ∣ A 3 ) = 2 18 P(B|A_3)=\frac{2}{18} P(B∣A3)=182,在第一次打碎的是好的,第二次打碎的是次品条件下,抽到次品的概率;
P ( B ∣ A 4 ) = 3 18 P(B|A_4)=\frac{3}{18} P(B∣A4)=183,在两次打碎的都是好的的条件下,抽到次品的概率;
P(B)表示在整个样本空间下的概率, 那么:
P ( B ) = P ( A 1 B ) + P ( A 2 B ) + P ( A 3 B ) + P ( A 4 B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + P ( A 3 ) P ( B ∣ A 3 ) + P ( A 4 ) P ( B ∣ A 4 ) P(B)=P(A_1B)+P(A_2B)+P(A_3B)+P(A_4B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+P(A_3)P(B|A_3)+P(A_4)P(B|A_4) P(B)=P(A1B)+P(A2B)+P(A3B)+P(A4B)=P(A1)P(B∣A1)+P(A2)P(B∣A2)+P(A3)P(B∣A3)+P(A4)P(B∣A4)
P ( B ) = 0.15 P(B)=0.15 P(B)=0.15
概率论与数理统计--第一章
最新推荐文章于 2024-09-16 21:19:58 发布