概率论与数理统计(第一章)1.1随机事件

随机事件与概率

1.1随机事件

1.1.1随机试验与样本空间

1.随机试验

随机试验具有不确定性、偶然性或随机性

随机试验(E)的三个特点:

①重复性(可在相同条件下重复进行)

②明确性(在实验之前知道所有可能的结果)

③随机性(每次试验的结果都具有随机性)

确定性试验结果外在表现为确定性现象或必然现象;随机试验的外在表现为随机现象偶然现象。

随机现象的统计规律性:在大量的重复试验或观察中,随机现象呈现出某种固有的规律性。(大量的偶然之中存在着必然的规律)

2.样本空间与样本点

一个随机试验的所有可能结果组成的集合称为该试验的样本空间,记为\OmegaS

样本空间中的每个元素\omega,即试验的每个可能结果,称为该试验的样本点。(\omega \epsilon \Omega

有限样本空间S={1,2,3,4,5,6}和无限样本空间S={ t | t > 0 }。

1.1.2随机事件

随机事件是试验的若干个可能组成的集合(样本空间的某些子集合A\subset \Omega,注意和样本点区分)。

常用A,B,C,...表示;并且用同一个字母加下标的方式来表示几个事件具有同类属性,如A_{1}A_{2},...,A_{n},...。

只有一个样本点所构成的随机事件是基本事件;一定会发生的事件是必然事件不可能事件记为\varnothing

注:在一次试验中,当且仅当这一集合中的一个样本点出现时(一个基本事件发生),称这一事件发生;

【随即试验\rightarrow样本空间\rightarrow随机事件】

1.1.3事件之间的关系

1.包含关系

若事件A发生必然导致事件B发生;事件B不发生时,A必不发生;则称事件A包含于事件B,记为A\subset B

结论:对于任一事件A,总有\varnothing \subset A\subset \Omega

2.相等关系

A、B两个事件同时发生或同时不发生,记为A= B\Leftrightarrow A\subset BB\subset A

相等的事件:同一事件的不同表述。

1.1.4事件的运算

1.事件的乘积

 “事件A与B同时发生”的事件称为事件A与B的乘积,记为A\cap B(或AB)。

“ \cap ” 表示“且”、“都”、“同时”。

 推广:

  • A\cap B\cap C(ABC)表示A,B,C同时发生;
  • \bigcap_{k=1}^{n}A_k{}表示n个事件A_1{}A_2{},…,A_n{}同时发生;
  • \bigcap_{k=1}^{\infty }A_k{}表示可列个事件A_1{}A_2{},…,A_n{},…同时发生。

性质:

  • (1)A\cap B\subset A,A\cap B\subset B;
  • (2)若A\subset B,则AB=A;
  • (3)交换律:A\cap B=B\cap A
 2.事件的和

“事件A与B中至少有一个发生”的事件称为事件A与B之和,记为A\cup B(或A+B)。

或事件A发生,或事件B发生,或事件A和B都发生。

“ \cup ” 表示“或”、“至少有一个”。

 推广:

  • A_1{}+A_2{}+...+A_n{}=\bigcup_{i=1}^{n}A_{i} 表示n个事件A_1{}A_2{},…,A_n{}中至少有一个发生。
  • \bigcap_{k=1}^{\infty }A_k{}表示可列个事件A_1{}A_2{},…,A_n{},… 中至少有一个发生这一事件。

性质:

  • (1)A\subset A\cup B,B\subset A\cup B;
  • (2)若A\subset B,则A\cup B=B;
  • (3)交换律:A\cup B=B\cup A;
  • (4)交对并的分配律:A\cap (B\cup C)=(A\cap B)\cup (A\cap C);
  • (5)并对交的分配律:A\cup (B\cap C)=(A\cup B)\cap (A\cup C);
3.事件的差

“事件A发生且事件B不发生”的事件称之为A与B之差,记为A-B。

事件A与B的差分为一般差真差。【若B不包含于A,A与B的差则为一般差,A-B=A-AB=\left ( A\cup B \right )-B;若B\subset A,A-B的差则为真差】

注:事件的差运算A-B并未要求B\subset A

性质:

  • (1)A-A=\varnothing;
  • (2)A-\varnothing =A;
  • (3)A-\Omega =\varnothing;

注:事件差不再是和的逆运算。【A+B=C不能推出C-B=A,eg:A+A=A

4.互不相容

事件A与事件B不可能同时发生,即A\cap B=\varnothing,则称事件A与事件B互不相容(或互斥)

 推广:

  • 如果n个事件A_1{}A_2{},…,A_n{}中任意两个事件不可能同时发生,即A_i{}\cap A_j{}=\varnothing1\leq i< j\leq n两两互斥,则称这个n事件是互不相容的。

注:基本事件互不相容,反之未必;不可能事件\varnothing与任何事件A都互不相容。

5.对立(逆)事件

设A表示“事件A发生”,则“事件A不发生”称为事件A的对立事件或逆事件,记为\AA\bar{A}

性质:

  • \bar{\bar{A}}=A\bar{\Omega }=\varnothing\bar{\varnothing }=\Omega
  • A+\bar{A}=\Omega ,A\bar{A}=\varnothing.

差化积公式:A-B=A\bar{B}

相互对立:若事件A与事件B满足条件A\cap B=\varnothing(不可能同时发生)且A\cup B=\Omega(至少有一个发生),有且仅有一个发生,则称事件A与事件B相互对立。即B=\bar{A}A=\bar{B}。   

相互独立事件与互不相容事件的区别:

对偶原则:\overline{A\cup B}=\bar{A}\cap \bar{B},\overline{A\cap B}=\bar{A}\cup \bar{B.}(并集的余集等于余集的交集,交集的余集等于余集的并集)好绕呀,看着有点晕😵

推广:

    推广到有限个事件中:

  • \overline{\bigcup_{i=1}^{n}A_i{}}=\bigcap_{i=1}^{n}\bar{A_i{}}
  • \overline{\bigcap_{i=1}^{n}A_i{}}=\bigcup_{i=1}^{n}\bar{A_i{}}.
6.完备事件组

如果一组事件A_1{}A_2{},…,A_n{}满足两个条件:①两两互不相容A_i{}\cap A_j{}=\varnothingi\neq j;②在每次试验中至少有一个发生\bigcup_{i=1}^{n}A_i{}=\Omega;则称A_1{}A_2{},…,A_n{}构成一个完备事件组。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值