Python自动化办公:读取Excel数据并批量生成合同

本文介绍了如何使用Python的openpyxl和docxtpl库,结合Excel和Word模板,批量生成销售合同。通过读取Excel数据,转换时间戳,然后替换Word模板中的占位符,最终实现快速创建多个销售合同。
摘要由CSDN通过智能技术生成

adc3663db5fd71384fae538d32c645e3.png

在我们的工作中,面临着大量的重复性工作,通过人工方式处理往往耗时耗力易出错。而Python在自动化办公方面具有极大的优势,可以解决我们工作中遇到的很多重复性问题,分分钟搞定办公需求。

一、背景

在我们经济交往中,有时会涉及到销售合同的批量制作。比如我们需要根据如下合同数据(Excel),进行批量生成销售合同(Word)。

d67deb769d7e910e7496c9a8abf700d8.png

二、准备

我们首先要准备好一份合同模板(Word),将需要替换的合同数据用{{}}表示,如下:

ab2506f591438b9c860a02ebf7ce6f75.png

三、实战

1.安装相关库

openpyxl是一个操作Excel非常好用的库,功能相对于xlrd、xlwt来说更为完整,我们首先安装它:

pip install openpyxl

docxtpl 是一个操作Word非常好用的库,其主要通过对docx文档模板加载,从而对其进行修改,我们也安装下这个库。

pip install docxtpl

2.读取合同数据

我们可以通过load_workbook方法打开合同数据(Excel表),然后读取每一个合同数据并存入到data字典,再将每个字典放入到列表datas中。PS:由于读取的签约日期是一个时间戳,需要通过strftime方法转为标准的年月日格式。

from docxtpl import DocxTemplate
from openpyxl import load_workbook

wb = load_workbook("合同数据.xlsx")
ws = wb['Sheet1']
datas = []
for row in range(2, ws.max_row):
    name1 = ws[f"A{row}"].value
    name2 = ws[f"B{row}"].value
    price = ws[f"C{row}"].value
    product = ws[f"D{row}"].value
    count = ws[f"E{row}"].value
    deadline = ws[f"F{row}"].value
    time = ws[f"G{row}"].value
    time = time.strftime("%Y-%m-%d")
    data = {"甲方": name1,
            "乙方": name2, 
            "合同价款": price, 
            "产品名称": product, 
            "产品数量": count,
            "付款期限": deadline,
            "签约时间": time}
    datas.append(data)
datas

当然,我们也可以通过pandas大法来读取合同数据,主要运用到dataframe_to_rows方法,将pandas格式的数据转为一行一行的数据。index=False表示不需要索引,header=False表示不需要表头。

import pandas as pd
from openpyxl.utils.dataframe import dataframe_to_rows

df = pd.read_excel("合同数据.xlsx")
df["签约日期"] = df["签约日期"].apply(lambda x:x.strftime("%Y-%m-%d"))
datas = []
for row in dataframe_to_rows(df,index=False,header=False):
    data = {"甲方": row[0], 
            "乙方": row[1], 
            "合同价款": row[2], 
            "产品名称": row[3], 
            "产品数量": row[4],
            "付款期限": row[5],
            "签约时间": row[6]} 
    datas.append(data)
datas

我们可以打印datas,效果如下:

[{'甲方': 'J哥',
  '乙方': '老王',
  '合同价款': 1000000,
  '产品名称': '菜J学Python',
  '产品数量': 1,
  '付款期限': 30,
  '签约时间': '2022-05-20'},
 {'甲方': 'K哥',
  '乙方': '张三',
  '合同价款': 20000,
  '产品名称': '冰箱',
  '产品数量': 2,
  '付款期限': 40,
  '签约时间': '2022-05-21'},
 {'甲方': 'C哥',
  '乙方': '李四',
  '合同价款': 30000,
  '产品名称': '电脑',
  '产品数量': 3,
  '付款期限': 50,
  '签约时间': '2022-05-22'},
 {'甲方': 'B哥',
  '乙方': '王五',
  '合同价款': 40000,
  '产品名称': '洗衣机',
  '产品数量': 4,
  '付款期限': 60,
  '签约时间': '2022-05-23'},
 {'甲方': 'P哥',
  '乙方': '赵六',
  '合同价款': 50000,
  '产品名称': '微波炉',
  '产品数量': 5,
  '付款期限': 70,
  '签约时间': '2022-05-24'}]

3.批量合同生成

这里运用for语句遍历每一个合同数据data(字典格式),打开合同模板,并将data替换掉合同模板中的数据,然后保存为新的销售合同。

for data in datas:
    tpl = DocxTemplate('合同模板.docx')
    tpl.render(data)
    tpl.save(f'合同生成/{data["甲方"]}的销售合同{data["签约时间"]}.docx')
    print(f'{data["甲方"]}的销售合同已生成')

代码运行后,效果如下:

ea93e5f99545ef60c704ca988afe224f.png

打开其中一个销售合同,效果如下:

a1f52bd578a3aad28a9aa17bb8c53188.png

 
 

0f89c9e49733ecab0a29d4b26f762ca9.png

 
 
对比Excel系列图书累积销量达15w册,让你轻松掌握数据分析技能,可以在全网搜索书名进行了解选购:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值