双重差分模型了解一下?

本文介绍了双重差分法(DID)作为分析方法,用于评估如促销活动等的效果。通过对比活动区域与非活动区域在活动前后的销量变化,排除自然变化因素,计算出活动带来的实际影响。DID假设在无活动情况下,活动区域和非活动区域的变化趋势一致。若无法找到对照区域,可以使用类似时间段的数据进行比较。该模型强调精确分析每个影响因素的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总第163篇/张俊红

今天给大家介绍一种比较常用分析方法。叫做双重差分法。啥叫个双重差分法呢?我们先不管这个什么法,我们直接来看例子。

假如现在市场同学做了一场促销活动,然后让你评估一下这场活动的效果怎么样,假设你们事先已经明确了活动的目标就是提高销量。那要看活动效果怎么样,其实就是看一下活动前后的销量有没有变化。通过对比活动前后的数据,你发现活动前后销量增加了10%,可是你能说明这10%全是活动带来的吗?很显然不太能。

为什么不能呢?是因为如果没有活动,不同时间段的销量本来就会发生变化。知道了原因了,现在我们需要去排除原因。那怎么排除呢?我们可以找一部分与活动区域相似的区域(注意,这里要相似的区域),然后给这些区域不上活动,看不上活动的区域,在两个时间段内销量的变化情况。如果你现在通过数据发现,不上活动的区域在两段时间内销量变化了4%。

通过上活动与不上活动两部分区域在两段时间内的比较,我们就可以得出活动带来的效果是:
总增量-自然增量=10%-4%=6%。

我们把前面只对活动前后的数据比较叫做一重差分法。对上活动区域前后效果与不上活动区域前后效果的比较称为双重差分,简称DID(difference in dif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊红的数据分析之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值