学习笔记

1.按钮添加音效功能

SoundPool sp= new SoundPool(10, AudioManager.STREAM_SYSTEM, 5);//第一个参数为同时播放数据流的最大个数,第二数据流类型,第三为声音质量

int music = sp.load(this, R.raw.key_sound, 1); //把你的声音素材放到res/raw里,第2个参数即为资源文件,第3个为音乐的优先级

sp.play(music, 1, 1, 0, 0, 1);就会自动播放, /src/raw文件夹下的key_sound.mp3音乐文件


2.android把字符串内容保存到指定路径

public static void saveFile(String str) {
		String filePath = null;
		boolean hasSDCard = Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED);
		if (hasSDCard) {
			filePath = Environment.getExternalStorageDirectory().toString() + File.separator + "hello.txt";
		} else
			filePath = Environment.getDownloadCacheDirectory().toString() + File.separator + "hello.txt";
		
		try {
			File file = new File(filePath);
			if (!file.exists()) {
				File dir = new File(file.getParent());
				dir.mkdirs();
				file.createNewFile();
			}
			FileOutputStream outStream = new FileOutputStream(file);
			outStream.write(str.getBytes());
			outStream.close();
		} catch (Exception e) {
			e.printStackTrace();
		}

}

内容概要:本文介绍了利用Matlab代码实现处理IMU、GPS传感器数据的多种姿态解算算法,重点包括卡尔曼滤波和扩展卡尔曼滤波等技术,旨在提升导航系统的精度与稳定性。通过对传感器数据进行融合与滤波处理,有效解决了惯性导航系统中存在的累积误差问题,提高了动态环境下的姿态估计准确性。文章还提供了完整的算法实现流程和仿真验证,展示了不同滤波方法在实际应用场景中的性能对比。; 适合人群:具备一定Matlab编程基础,从事导航、控制、机器人或自动驾驶等相关领域研究的科研人员及工程技术人员,尤其适合研究生及以上学历或有相关项目经验的研发人员。; 使用场景及目标:①应用于无人机、无人车、机器人等自主导航系统中的姿态估计;②用于教学与科研中对滤波算法的理解与改进;③帮助开发者掌握IMU【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度和稳定性(Matlab代码实现)/GPS融合算法的设计思路与实现技巧,提升系统鲁棒性与定位精度。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,逐步调试并理解各算法模块的作用,重点关注传感器数据预处理、状态方程构建、噪声协方差调节及滤波结果分析等关键环节,以达到深入掌握姿态解算核心技术的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值