caffe
junmuzi
这个作者很懒,什么都没留下…
展开
-
Caffe下卷积神经网络(CNN)中的一些特殊层(Batch Normalization)
Original url:https://blog.csdn.net/xg123321123/article/details/52610919Batch Normalization意义: 网络训练时,用来加速收敛速度提醒: 已经将BN集成为一个layer了,使用时需要和scale层一起使用训练的时候,将BN层的use_global_stats设置为false; 测试的时候将use_global_s...转载 2018-04-06 22:22:42 · 1130 阅读 · 0 评论 -
深度学习(二十七)可视化理解卷积神经网络-ECCV 2014
original url:http://blog.csdn.net/hjimce/article/details/50544370可视化理解卷积神经网络原文地址:http://blog.csdn.net/hjimce/article/details/50544370作者:hjimce一、相关理论本篇博文主要讲解2014年ECCV上的一篇经典文献:《Vis转载 2016-12-16 15:54:05 · 393 阅读 · 0 评论 -
怎样用自己的数据集对caffe训练好的model进行fineture(当类别数量不一致时)
Ref: http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.htmle.g:Because we are predicting 20 classes instead of a 1,000, we do need to change the last layer in the model.原创 2016-12-07 16:15:19 · 885 阅读 · 0 评论 -
对CNN中pooling的理解
original url:http://blog.csdn.net/jiejinquanil/article/details/50042791自己在看论文的过程中结合网上的一些资料,对pooling的一些理解汇总如下,以供参考: 1、pooling主要是在用于图像处理的卷积神经网络中,但随着深层神经网络的发展,pooling相关技术在其他领域,其他结构的神经网络中也越来转载 2016-11-17 21:38:06 · 1700 阅读 · 0 评论 -
pooling mean max 前向和反向传播
original url:http://blog.csdn.net/qq_14975217/article/details/51524009对于mean pooling,真的是好简单:假设pooling的窗大小是2x2, 在forward的时候啊,就是在前面卷积完的输出上依次不重合的取2x2的窗平均,得到一个值就是当前mean pooling之后的值。backward的转载 2016-11-17 20:35:24 · 7445 阅读 · 1 评论 -
Caffe小玩意(1)-可视化网络结构
original url:http://blog.csdn.net/u014510375/article/details/51697946最近在学习Caffe,但是作为曾经的Windows深度用户,还是比较习惯可视化的界面。然而,Caffe当然是在Linux/OS X系统下更好啦,因为一般还是写script在命令行里面玩的。所以这样就不直观咯,为了能直观地看清楚网络结构,而转载 2016-06-27 19:16:33 · 2266 阅读 · 0 评论 -
常用层及参数
original url:http://www.cnblogs.com/denny402/p/5072746.html本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。1、softmax-losssoftmax-loss层和softmax层计转载 2016-10-20 13:38:27 · 445 阅读 · 0 评论 -
随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比
original url:http://blog.csdn.net/lilyth_lilyth/article/details/8973972梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正。下面的h(x)是要拟合的函数,J(the转载 2016-10-20 11:02:21 · 463 阅读 · 0 评论 -
solver及其配置参数详解
original url:http://www.cnblogs.com/denny402/p/5074049.htmlsolver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为# caffe train --solver=*_slover.prototxt在Deep Learnin转载 2016-10-20 10:59:37 · 3502 阅读 · 0 评论 -
在分类中如何处理训练集中不平衡问题
original url:http://blog.csdn.net/heyongluoyao8/article/details/49408131原文地址:一只鸟的天空,http://blog.csdn.net/heyongluoyao8/article/details/49408131在分类中如何处理训练集中不平衡问题 在很多机器学习任务中,训转载 2016-10-19 20:08:33 · 587 阅读 · 0 评论 -
[Caffe]:关于 Error parsing text-format Caffe.NetParameter: xxx.xx : Expected interger or identifier.
original url:http://blog.csdn.net/cham_3/article/details/55505363错误描述 这是protobuf提示的一个错误。它的意思是在用户的prototxt中第xxx行,第xx 列缺少一个整型数或者标识符。解决方法检查对应的prototxt文件,在第xxx行,第xx 列是否缺漏了相应的信息。=====转载 2017-03-12 16:14:32 · 16267 阅读 · 5 评论 -
c++编译错误:invalid new-expression of abstract class type
original url:http://www.tsingfun.com/html/2016/dev_0607/1512.html出现这个错误原因是new 了一个抽象类出错,说明父类(接口)中有纯虚函数没有实现。接口里的纯虚函数全部需要实现,这样才能new 子类。纯...出现这个错误原因是new 了一个抽象类出错,说明父类(接口)中有纯虚函数没有实现。接转载 2017-03-13 16:58:38 · 17908 阅读 · 1 评论 -
神经网络优化算法如何选择Adam,SGD
Original url:https://blog.csdn.net/u014381600/article/details/72867109之前在tensorflow上和caffe上都折腾过CNN用来做视频处理,在学习tensorflow例子的时候代码里面给的优化方案默认很多情况下都是直接用的AdamOptimizer优化算法,如下:optimizer = tf.train.AdamOptimiz...转载 2018-04-09 21:23:25 · 573 阅读 · 1 评论 -
怎么读取或修改caffe gpu中的数值
Original url:https://www.zhihu.com/question/49432190/answer/132305638即通过修改cpu的值来修改gpu的值,caffe中cpu和gpu的值是一样的。猜测:gpu在内存中的map地址和cpu在内存中的map地址是一样的。。。。故修改cpu的值即是修改了gpu的值。。。。示例:貌似不可以用这种方式修改gpu的值。要进到kernel里面...转载 2018-03-27 10:40:31 · 1076 阅读 · 0 评论 -
caffe中如何设置某层不参与反向传播
Original url:https://blog.csdn.net/lanyuxuan100/article/details/78881501在编写caffe某些层的时候,需要设置其不进行反向传播,否则会有类似如下的错误:主要有两种方法解决:(1)如果是C++写的层,直接在prototxt中层参数设置的时候,添加如下参数即可:lr mult:0decay mult:0以faster-rcnn为例...转载 2018-03-26 22:47:15 · 1201 阅读 · 0 评论 -
总结caffe调参技巧
Original url:https://blog.csdn.net/baidu_26408419/article/details/78497201好的URL:https://machinelearningmastery.com/improve-deep-learning-performance/http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNN...转载 2018-04-09 00:00:00 · 778 阅读 · 0 评论 -
loss曲线震荡分析
Original url:https://blog.csdn.net/yuanlunxi/article/details/79378301Loss曲线震荡:分析原因: 1:训练的batch_size太小 1. 当数据量足够大的时候可以适当的减小batch_size,由于数据量太大,内存不够。但盲目减少会导致无法收敛,batch_size=1时为在线学习。2. batch的选择,首先...转载 2018-04-08 23:44:07 · 7463 阅读 · 0 评论 -
caffe绘制训练过程的loss和accuracy曲线
Original url:https://blog.csdn.net/u013078356/article/details/51154847在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tools/extra/parse_log.sh caffe-ma...转载 2018-03-31 15:17:19 · 305 阅读 · 0 评论 -
caffe中LOG(INFO) DLOG(INFO)介绍(统称Google glog)
Original url:http://blog.51cto.com/mengjh/546766 本文是根据自己的理解翻译组织了glog的manual,鉴于自身的理解能力和英语水平,可能存在谬误,欢迎大家指出!英文原文见http://google-glog.googlecode.com/svn/trunk/doc/glog.html 1. 概述 Google glog是一个基于程...转载 2018-03-23 17:17:32 · 5447 阅读 · 0 评论 -
_caffe.so: undefined symbol: _ZN5caffe4mtx_E
Solution:Makefile.configUncomment to support layers written in Python (will link against Python libs)WITH_PYTHON_LAYER := 1ref:https://github.com/BVLC/caffe/issues/3834原创 2017-11-27 20:23:40 · 2608 阅读 · 1 评论 -
caffe中的StartInternalThread函数怎么被调用的
StartInternalThread函数将会启动多线程(启动数据的预读操作)。在train的时候:int train() { ... if (gpus.size() > 1) { // Here will call StartInternalThread caffe::P2PSync sync(solver, NULL, solver->原创 2017-03-14 17:23:52 · 892 阅读 · 0 评论 -
深度残差网络解读(MSRA 152层网络)
original url:http://caffecn.cn/?/article/42015_Arxiv_Deep Residual Learning for Image Recognition 首先感谢 @辛淼 博士的邀请,末学在这里把阅读《Deep Residual Learning for Image Recognition》一文的心得和转载 2016-11-09 14:54:13 · 6482 阅读 · 0 评论 -
cudnn program ref docs
Ref cuDNN User Guide to write your program.You could download cuDNN User Guide via follow url:https://developer.nvidia.com/rdp/cudnn-downloadhttps://developer.nvidia.com/rdp/cudnn-archiv原创 2016-10-27 23:11:58 · 674 阅读 · 0 评论 -
cuDNN need NVIDIA GPUs of compute capability 3.0 and higher
2.6. GPU and driver requirementscuDNN v3.0 supports NVIDIA GPUs of compute capability 3.0 and higher and requiresan NVIDIA Driver compatible with CUDA Toolkit 7.0.This is ref cuDNN v3 use原创 2016-10-18 10:25:26 · 2169 阅读 · 0 评论 -
RBM(限制玻尔兹曼机)、DBN(深度信念网络)介绍
original url:http://blog.csdn.net/chlele0105/article/details/17251971 一、DBNs是一个概率生成模型,与传统的判别模型的神经网络相对,用于建立一个观察数据和标签之间的联合分布。 二、DBN的训练 CD(Con转载 2016-09-09 19:22:19 · 3405 阅读 · 0 评论 -
caffe全连接层原理解读
original url:http://blog.csdn.net/tina_ttl/article/details/51034867在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层、卷积操作层、pooling层、非线性变换层、内积运算层、归一化层、损失计算层等;本篇主要介绍全连接层该层是对元素进行w转载 2016-08-29 20:04:36 · 5978 阅读 · 0 评论 -
Caffe的卷积原理
original url:http://www.cnblogs.com/yymn/articles/5330587.htmlCaffe的卷积原理Caffe中的卷积计算是将卷积核矩阵和输入图像矩阵变换为两个大的矩阵A与B,然后A与B进行矩阵相乘得到结果C(利用GPU进行矩阵相乘的高效性),三个矩阵的说明如下:(1)在矩阵A中转载 2016-08-29 18:11:43 · 2303 阅读 · 0 评论 -
Caffe中权值是怎么更新的
网址:http://blog.csdn.net/mounty_fsc/article/details/51588773(Caffe,LeNet)权值更新(七)在Solver::ApplyUpdate()函数中,根据反向传播阶段计算的loss关于网络权值的偏导,使用配置的学习策略,更新网络权值从而完成本轮学习。1 模型优化1.1 损失函数损失函数L转载 2016-08-16 17:21:23 · 3186 阅读 · 0 评论 -
基于Deep Learning 的视频识别技术
original url:https://yq.aliyun.com/articles/39134深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者。互联网视频在最近几年也特别火,短视频、视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器。当这两个火碰在一起,会产生什么样的化学反应呢? 不说具体的技术,先上一张福利图,转载 2016-07-21 15:47:07 · 16225 阅读 · 0 评论 -
Nvidia显卡对应的计算能力(List of Nvidia graphics processing units)
Original url:https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units原创 2016-06-28 21:13:36 · 14337 阅读 · 1 评论 -
CMake Error: Could not find CMAKE_ROOT !!!(ubuntu14.04)
$ cmake -D CMAKE_INSTALL_PREFIX=/opt/sequence_to_sequence_video_to_text/ -D CMAKE_BUILD_TYPE=debug ../CMake Error: Could not find CMAKE_ROOT !!!CMake has most likely not been installed correctly.原创 2016-07-04 12:17:03 · 6542 阅读 · 0 评论 -
caffe source code analysis
1, 图片只能转换成caffe可读的leveldb或者lmdb存储。The backend {lmdb, leveldb} for storing the result.2, How to Setup Caffe to Use Other Datasets by Modifying imagenet Examplehttp://drubiano.github.io/2014/06/18原创 2016-07-02 17:33:15 · 1676 阅读 · 0 评论 -
神经网络中的参数的求解:前向和反向传播算法
original url:http://www.cnblogs.com/happylion/p/4193527.htmlFor more info: you could ref the book《Pattern Recognition and Machine Learning》神经网络最基本的知识可以参考神经网络基本知识,基本的东西说的很好了,然后这里讲一下神转载 2016-07-13 21:37:55 · 4869 阅读 · 1 评论 -
[caffe]深度学习之图像分类模型AlexNet解读
original url:http://blog.csdn.net/sunbaigui/article/details/39938097在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军。要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet,这是CNN在图像分类上的经典模型(DL火起来之转载 2016-08-20 09:41:59 · 704 阅读 · 0 评论 -
caffe调参经验资料文章
original url:http://www.voidcn.com/blog/langb2014/article/p-5748576.html调参是个头疼的事情,Yann LeCun、Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络?下面一些推荐的书和文章:调参资料总结Neural Network: Trick转载 2016-08-31 20:59:50 · 1059 阅读 · 0 评论 -
caffe安装总结
original url:http://blog.csdn.net/caozhantao/article/details/51479172这周安装了caffe的windows版本和linux版本,依赖关系太多,如果系统选对了,安装起来很easy,选错了,就会遇见各种坑。1.操作系统最好使用ubuntu desktop 14.04 64位。我试用的操作系统原创 2016-10-17 22:57:48 · 2032 阅读 · 0 评论 -
convolution层特点及有无激活函数(caffe)
1,convolution层(局部感知,权值共享)2,caffe中convolution的实现中没有激活函数,所以通常要在配置文件中该层之后添加一个ReLU层作为激活函数。Ref:http://www.jeyzhang.com/cnn-learning-notes-1.html附该文章:概述卷积神经网络(Convolutional Neural原创 2016-11-07 21:12:13 · 12208 阅读 · 0 评论 -
caffe学习资源汇总
original ref:http://blog.csdn.net/langb2014/article/details/51543388学习需要更新,网上有一些非常不错博客,首先感谢这些博主,他们都很认真。其次是这些笔记。1、xizero002、lingerlanlan3、iamzhangzhuping4、zhangwang5、yhl_leo6、在路转载 2016-10-13 20:22:17 · 914 阅读 · 0 评论 -
caffe的Solver介绍 以及 max_iter迭代的具体代码实现
Original url:http://alanse7en.github.io/caffedai-ma-jie-xi-4/本文将主要分为四部分的内容:Solver的初始化(Register宏和构造函数)SIGINT和SIGHUP信号的处理Solver::Solve()具体实现SGDSolver::ApplyUpdate具体实现Solver的初始化(Reg转载 2016-09-22 10:29:40 · 5117 阅读 · 0 评论 -
caffe中利用imread如何读取和存储4通道的image
C++ read codes:cv::Mat cv_img = cv::imread("./1.png",-1);std::cout cv_img.channels() std::endl;// prints 4Matlab Write codes:imwrite(A, './1.png', TIFF);Ref:htt原创 2016-10-09 22:17:10 · 2747 阅读 · 0 评论