62. 不同路径_备忘录递归_DP

DP

  • 状态变量的选择
  • 状态变量的初始化
  • 状态转移方程

62. 不同路径

在这里插入图片描述

递归
由于只可以向下和向右走,所以我们不必像其它题保留走过的路径visited

int dfs(int n,int m,int i,int j){
    if(i==n-1 || j==m-1) return 1;
    int lpath = dfs(n,m,i+1,j);
    int rpath = dfs(n,m,i,j+1);
    return lpath+rpath;
}

/*
int dirs[2][2] = {{1,0},{0,1}};
void dfs(int n,int m,int i,int j,int& ans){
   if(i==n-1 && j==m-1){
       ans+=1;  return ;
   }
   for(int d=0;d<2;d++){
       int nx = i+dirs[d][0];
       int ny = j+dirs[d][1];
       if(nx>=0&&nx<n&&ny>=0&&ny<m){
           dfs(n,m,nx,ny,ans);
       }
   }
}
*/

但是这种递归运算会带入很多重复运算,如向右向下走和向下向右走回到达同一个点,会继续递归到[n-1][m-1点进行计算,如图所示:
在这里插入图片描述
可以看到7x3 分别从两个方向都走到了6x2,造成了重复计算

带备忘录的递归
可以使用二维数组保留之前已经计算过的路径数可以避免大量的重复计算


int dfs(int n,int m,int i,int j,vector<vector<int>>& dp){
        if(i==n-1 || j==m-1) return 1;
        if(dp[i][j]>0) return dp[i][j];
        int ans = 0;
        ans += dfs(n,m,i+1,j,dp);
        ans += dfs(n,m,i,j+1,dp);
        dp[i][j] = ans;
        return dp[i][j];
    }
/*
   int dfs(int n,int m,int i,int j,vector<vector<int>>& dp){
        if(i==n-1 || j==m-1) return 1;
        if(dp[i][j]>0) return dp[i][j];
        int ans = 0;
        for(int d=0;d<2;d++){
            int nx = i+dirs[d][0];
            int ny = j+dirs[d][1];
            if(nx>=0&&nx<n&&ny>=0&&ny<m){
                ans += dfs(n,m,nx,ny,dp);
            }
        }
        dp[i][j] = ans;
        return dp[i][j];
    }
*/

动态规划DP
使用 dp[i][j] 存储走到i,j时 总可能的路径数
因为只可以向下向右走,则任意点的路径数为dp[i][j] = dp[i-1][j] + dp[i][j-1];
dp初始化最上面一排和最左面一排,因为只可以向右走和向下走,所以初始化路径数都为1,其它为0

 int uniquePaths(int m, int n) {
        vector<vector<int>> dp(n,vector<int>(m,0));
        for(int i=0;i<n;i++) dp[i][0]=1;
        for(int i=0;i<m;i++) dp[0][i]=1;
		
        for(int i=1;i<n;i++){
            for(int j=1;j<m;j++){
                dp[i][j] = dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[n-1][m-1];
    }
};

63. 不同路径II

在这里插入图片描述
状态转移方程跟上题一样,不同的是 初始化需要改变,以及如果dp[i][j]的上一步中存在障碍,则舍弃那条路的可能路径数

int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
    if(!obstacleGrid.size() || !obstacleGrid[0].size()) return 0;

    int m = obstacleGrid.size();
    int n = obstacleGrid[0].size();
    long dp[m][n];
    for(int i=0;i<m;i++){
        for(int j=0;j<n;j++)
        {
            if(i==0 && j==0){
                if(obstacleGrid[i][j]==0) dp[i][j]=1;
                else dp[i][j]=0;
            }
            else if(i==0)  {
                if( obstacleGrid[i][j]==0) dp[i][j] = dp[i][j-1];
                else dp[i][j]=0;
            }
            else if(j==0)  {
                if( obstacleGrid[i][j]==0) dp[i][j] = dp[i-1][j];
                else dp[i][j]=0;
            }
        }
    }

    for(int i=1;i<m;i++){
        for(int j=1;j<n;j++){
            if(obstacleGrid[i][j]==1) dp[i][j]=0;
            else {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
    }
    return dp[m-1][n-1];
}

198. 打家劫舍

递归

int help(vector<int>& nums,int i){
   if(i>=nums.size()) return 0;
   int doit = help(nums,i+2)+nums[i];  // 抢这家  去下下家
   int nodo = help(nums,i+1);  // 不抢这家  去下家
   return max(doit,nodo);  // 返回当前位置最大值
}

备忘录

int help(vector<int>& nums,int i,vector<int>& memo){
    if(i>=nums.size()) return 0;
    if(memo[i]!=-1) return memo[i];
    int doit = help(nums,i+2,memo)+nums[i];
    int nodo = help(nums,i+1,memo);
    memo[i] = max(doit,nodo);
    return max(doit,nodo);
}

64. 最小路径和

很典型的DP题,只需要注意初始化皆可以
dp[i][j] 存储走到i,j点时,当前的路径和
因为只有两个方向走,所以任意点的最小路径和,为上两个点的最小路径和加上当前点的权重 dp[i][j] = min(dp[i-1][j]+grid[i][j],dp[i][j-1]+grid[i][j]);

int minPathSum(vector<vector<int>>& grid) {
        if(!grid.size() || !grid[0].size()) return 0;
        int m = grid.size();
        int n = grid[0].size();
        vector<vector<int>> dp(m,vector<int>(n,0));
        dp[0][0] = grid[0][0];

        for(int i=1;i<m;i++) dp[i][0] = dp[i-1][0]+grid[i][0];
        for(int i=1;i<n;i++) dp[0][i] = dp[0][i-1]+grid[0][i];
        
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j] = min(dp[i-1][j]+grid[i][j],dp[i][j-1]+grid[i][j]);
            }
        }
        return dp[m-1][n-1];
    }

139. 单词拆分

在这里插入图片描述
使用dp[i] 表示字符串第i个位置之前的子字符可拆分出来
所以任意点的状态为 dp[i+j] = dp[i] && m.find(s.substr(i,j))!=m.end(),即第i个字符可拆分,且i-j之前的子字符也可拆分,此时就更新dp[i+j]可拆分,dp[s.size()]记录到字符最后长度时,是否存在可拆分的路径组合

"aaaaaaa"  dice = {'aaaa','aaa'}  0-3 可拆分‘aaa’ 3-6 可拆分‘aaa’  但是最后一个‘a’ 不可拆分
								   0-4 可拆分‘aaaa’   4-7可拆分‘aaa’ 
bool wordBreak(string s, vector<string>& wordDict) {
        vector<bool> dp(s.size()+1,false);
        unordered_set<string> m(wordDict.begin(), wordDict.end());
        dp[0] = true;
        
        // 从0开始,切割(1,len)长的子字符, 然后从1开始,切割(1,len-1)的子字符
        for(int i=0;i<s.size();i++){
            for(int j=1;j<=s.size()-i;j++){
                if(dp[i] && m.find(s.substr(i,j))!=m.end()){
                    dp[i+j] = true;
                }
            }
        }
        
        // 另一种切割子字符串的方式  从不同的
        // for(int i=1;i<=s.size();i++){
        //     for(int j=0;j<i;j++){
        //         if(dp[j] && m.find(s.substr(j,i-j))!=m.end()){
        //             dp[i] = true;
        //             break;
        //         }
        //     }
        // }


        return dp[s.size()];
    }

343. 整数拆分

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

使用dp[i] 记录数字i拆分可组合的最大乘积子和
那么任意一点的可拆分最大值为 dp[i] = dp[j] * (i-j),即所有i之前的最大乘积*(i-j)的差值, 或者是直接拆分成两个数的乘积( j* (i-j) ),因为dp[j]是已经拆分过的最大值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值