覆盖网络中的稳定离开与云环境下的可疑系统调用检测
覆盖网络中的稳定离开
算法证明与定理推导
在覆盖网络中,对于链路稳定性的研究是保障网络正常运行的关键。假设 $(x_k, x_{k - 1})$ 是稳定的,那么在任何情况下,这条链路最终将不再是进入 $x_k$ 的链路。若 $(p, x_k)$ 的追踪没有反转,其追踪是有限的,最终会变成稳定链路 $(p’, x_k)$,但通过以下两种情况的分析可知这是不可能的:
- 情况 2a :若 $p’$ 是停留的,$p’$ 最终会向 $x_k$ 介绍自己。若 $x_k < p’ < x_{k - 1}$,$x_k$ 会将 $x_{k - 1}$ 委托出去,这与 $(x_k, x_{k - 1})$ 稳定的假设矛盾;若 $p’ > x_{k - 1}$,类似情况 1a 的论证会表明 $(p’, x_k)$ 不稳定,同样与假设矛盾。
- 情况 2b :若 $p’$ 是离开的,$p’$ 最终会要求 $x_k$ 反转其右边缘,$x_k$ 会执行此操作,这也与 $(x_k, x_{k - 1})$ 稳定的假设矛盾。
此外,$x_k$ 永远不会创建进入自身的链路,因为只有在被要求反转 $(x_k, x_{k - 1})$ 时才会发生这种情况,但由于 $(x_k, x_{k - 1})$ 是稳定的,所以不会发生。因此,最终 $x_k$ 没有进入链路,完成了证明。
基于引理 2 和 5,得出定理 3:算法 SDA 和 NIDEC 预言机为 FDP 提供了一种自稳定解决方案。
超级会员免费看
订阅专栏 解锁全文
16

被折叠的 条评论
为什么被折叠?



