Erin_yu
码龄8年
关注
提问 私信
  • 博客:283,527
    283,527
    总访问量
  • 15
    原创
  • 1,501,978
    排名
  • 146
    粉丝

个人简介:want to learn more knowledge about computer.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-03-22
博客简介:

just_a_new_life

博客描述:
分享与交流
查看详细资料
个人成就
  • 获得322次点赞
  • 内容获得130次评论
  • 获得2,288次收藏
  • 代码片获得1,845次分享
创作历程
  • 1篇
    2022年
  • 3篇
    2019年
  • 11篇
    2018年
成就勋章
TA的专栏
  • matlab函数
    1篇
  • 遗传算法
    1篇
  • R语言
    1篇
  • 目标检测算法
    2篇
  • 深度学习
    1篇
  • 学习笔记
    10篇
  • 面向对象的分析与设计
    5篇
  • 编译原理
    3篇
  • 操作系统
    1篇
  • Linux
  • python
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Matlab函数之ismember,find

matlab之ismember函数和find函数
原创
发布博客 2022.04.16 ·
6207 阅读 ·
1 点赞 ·
0 评论 ·
32 收藏

遗传算法 基本思想

“适者生存”是自然界的一大规律,优胜劣汰,顾名思义,遗传算法可用来解决最优的问题。遗传算法就是一个优胜劣汰的过程,最终选择出最好的群体。它的大致过程可以用下图表示:对于我们待求解的问题,首先确定解空间,然后根据我们要求解的问题确定适应度函数。最终是选取适应度值大的留下来。适应度函数的选取是根据原问题来的,一种简单的方法,比如是要求f = x^2 在[0,31]上的最大值,那么适应度函数...
原创
发布博客 2019.10.24 ·
8981 阅读 ·
2 点赞 ·
0 评论 ·
15 收藏

R语言 无法打开文件: No such file or directory

修了一门统计课,需要用到R语言,刚开始上手,还不是很熟悉。将文件"exam0203.txt"保存之后,使用 read.table进行读取,输出:无法打开文件'exam0203.txt': No such file or directory,如下图,查找了资料,才知道这是因为我的R软件工作目录路径与文件的保存目录路径不一致导致的,现将解决方法附上。由于是路径不一致导致的出错,所以可以在读...
原创
发布博客 2019.10.14 ·
68241 阅读 ·
52 点赞 ·
18 评论 ·
136 收藏

python 回数判断

回数:从左往右读和从右往左读是一样的数。判断方法有多种,可以先反转出从右到左的数字进行比较,也可以转成字符串进行字符比较等等,以下是相关总结。一、使用数学方法计算反转之后的数字,进行对比def is_palindrome(n): if n < 0: return False temp_n = n num = 0 #num反转之后的数字...
原创
发布博客 2019.08.24 ·
892 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

计算机操作系统 直接地址 多级间接地址

直接地址:直接使用磁盘存储数据。多级间接地址,有一级间接地址、二级间接地址、三级间接地址等。以下举例区别这几种地址:
原创
发布博客 2018.08.24 ·
5450 阅读 ·
12 点赞 ·
0 评论 ·
30 收藏

编译原理 实验二 递归下降语法分析程序

语法分析实验目的:编制一个递归下降分析程序,实现对词法分析程序所提供的单词序列的语法检查和结构分析。实验要求:利用C语言编制递归下降分析程序,并对简单语言进行语法分析。1.带分析的简单语言的语法用扩充的BNF表示如下:(1)&lt;程序&gt;::=begin&lt;语句串&gt; end(2)&lt;语句串&gt;::=&lt;语句&gt;{;&lt;语句&gt;}(3)&lt;语句&gt;::...
原创
发布博客 2018.07.10 ·
10780 阅读 ·
3 点赞 ·
0 评论 ·
49 收藏

编译原理 递归下降语法分析程序(代码+说明文档)

发布资源 2018.07.10 ·
rar

在线购物系统 实验七 顺序图

在线购物系统一、顺序图1、 游客注册顺序图2、 用户登录顺序图3、 用户修改个人信息顺序图4、 顾客搜索商品顺序图5、 顾客查询订单顺序图6、 顾客维护购物车顺序图7、 顾客购买商品顺序图8、 顾客评价商品顺序图9、 管理员管理商品顺序图10、客服回复咨询顺序图11、管理订单顺序图12、管理评...
原创
发布博客 2018.07.03 ·
39827 阅读 ·
53 点赞 ·
3 评论 ·
547 收藏

编译原理 实验一 词法分析器

编写一个词法分析程序
原创
发布博客 2018.07.03 ·
102257 阅读 ·
183 点赞 ·
93 评论 ·
1383 收藏

编译原理实验一 模拟DFA

本实验模拟DFA识别含相继3个1的二进制串DFA状态转换图如下:核心代码如下,其中状态转换图中的ABCD状态对应代码中各个函数。int A(char str[],int Num)//开始状态{ if(str[Num]=='0') { if(A(str,Num+1)==1) return 1; else ...
原创
发布博客 2018.07.03 ·
2909 阅读 ·
0 点赞 ·
1 评论 ·
22 收藏

在线购物系统 实验三分析类类图

根据我前面两篇博客的需求以及用况图,画了本次实验的分析类类图如下:感兴趣的可以看看我之前两篇博客:在线购物系统 实验一问题描述、词汇表(再次完善)                                                     在线购物系统 实验二用况图根据该类图,我做了以下文档辅助说明:该部分由以下部分组成:类图综述、类描述、关联描述、继承描述、依赖描述。1、  类图综述...
原创
发布博客 2018.05.09 ·
8659 阅读 ·
4 点赞 ·
0 评论 ·
53 收藏

在线购物系统 实验二用况图

一、用况图文字说明(1)     用况图综述整个用况图主要实现的是在线购物,注册后的用户登录后可以修改个人信息,顾客可以浏览搜索商品、与客服交流商品相关信息,选择满意的商品加入到购物车,对购物车进行管理,选择需要的商品进行下单购买,购买商品之后可以查看订单详情,收到商品之后可以评价商品。客服则可以查看相关顾客的订单、评价,与顾客进行交流。商品管理员也可以查看订单、评价,还可以管理商品。顾客、客服、...
原创
发布博客 2018.05.01 ·
5982 阅读 ·
2 点赞 ·
0 评论 ·
27 收藏

在线购物系统 实验一问题描述、词汇表(再次完善)

特此说明:由于上一篇博客是自己的初稿,还有一些瑕疵,现在将我修改完善之后的内容重新发布一次。上一次初稿链接:在线购物系统 问题描述、词汇表、领域类图问题描述在线购物系统:当今时代是发展迅速的信息化时代,计算机技术和网络技术的高速发展,使得足不出户成为一种常态。人们对信息的获取渠道以及信息的获知程度都提出了更高的要求。Internet的到来,互联网对传统行业的冲击让其成为了人们快速获取、发布和传递信...
原创
发布博客 2018.05.01 ·
1228 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

在线购物系统 问题描述、词汇表、领域类图

问题描述在线购物系统:当今时代是发展迅速的信息化时代,计算机技术和网络技术的高速发展,使得足不出户成为一种常态。人们对信息的获取渠道以及信息的获知程度都提出了更高的要求。Internet的到来,互联网对传统行业的冲击让其成为了人们快速获取、发布和传递信息的重要渠道。电子商务也逐渐流行起来,网上购物开始闯入人们的视野,向人们诠释一种全新的购物理念。传统购物方式要求购买者到商店里面亲自选购所需商品,商...
原创
发布博客 2018.04.15 ·
2426 阅读 ·
0 点赞 ·
0 评论 ·
14 收藏

YOLO 损失函数 loss

关于YOLO的损失函数,采用sum-squared error整合localization error(bboxes的坐标误差)和classification error,如果这两者的权值一致,会导致模型不稳定,训练发散。其中classification error包括两部分,一部分是没有包含object的box的confidence loss权值,另一部分则是有包含object的box的conf...
原创
发布博客 2018.04.07 ·
16147 阅读 ·
5 点赞 ·
15 评论 ·
23 收藏

目标检测算法之一 YOLO初步讲解

目前目标检测算法有很多,譬如:R-CNN,Faster R-CNN,DPM,RPN等等,YOLO也是其中之一,YOLO是当前目标检测算法中发展最为迅速的一个。YOLO结合了GooleNet modification和卷积神经网络的知识,可以对图像中的物体进行分类和定位。卷积神经网络对于物体分类来说效果是很好的,YOLO利用卷积层提取物体特征,通过全连接层进行分类和定位。接下来,我将大概讲一下YOL...
原创
发布博客 2018.04.01 ·
2349 阅读 ·
4 点赞 ·
0 评论 ·
16 收藏
加载更多