粒子群算法的matlab实现

粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来发展起来的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。
这里写图片描述


下面具体介绍粒子群算法的matlab实现:
目标函数:f = x1**2+x2**2-x3**2+3*sin(x1*x2*x3)
求解:在坐标范围x~(-10,10) z~(-10,10) y~(-10,10)的范围中的最大值,以及最大值所对应的x1,x2,x3

算法步骤:

首先初始化参数
%参数初始化
c1=1.49445;c2=1.49445;
maxgen=200; % 最大进化次数                                                      
sizepop=100; %粒子总数                                                        
psize = 3; % 粒子大小
Vmax=5;Vmin=-5; % 粒子移动速度范围                                           
lb = ones(psize,1)*(-10);
ub = ones(psize,1)*10;
bound = [lb,ub]; % 粒子移动的范围
wstart = 0.9;wend = 0.4; % 惯性权重

其中,惯性权重用来调节算法的寻优能力,当权重较大时,算法有较强的全局寻优能力,当权重较小时,算法有较强的局部寻优能力,在算法的运行当中,调节权重由大到小的变化,提升算法的性能。


惯性权重调节公式:
w = wstart-(wstart-wend)*((i1/maxgen)^2);

粒子群初始化,初始化粒子群中各个粒子的速度和位置
%产生初始粒子位置和速度
pop=zeros(sizepop,psize);
V=zeros(sizepop,psize);
fitness=zeros(1,sizepop);
for i1=1:sizepop
    %随机产生一个种群
    pop(i1,:) = (bound(:,2)-bound(:,1))'.*rand(1,psize)+bound(:,1)';
    V(i1,:)=rands(1,psize)*(Vmax-Vmin)+Vmin;                                        %随机初始化粒子速度
    %计算适应度
    fitness(i1)=fun(pop(i1,:));
end
粒子速度更新
V(i2,:)=w*V(i2,:)+c1*rand*(gbest(i2,:) - pop(i2,:))+c2*rand*(zbest - pop(i2,:));
限制粒子的速度上下限
tempV = V(i2,:);
tempV(tempV > Vmax) = Vmax;
tempV(tempV < Vmin) = Vmin;
V(i2,:) = tempV;
粒子位置更新
pop(i2,:)=pop(i2,:)+V(i2,:);
限制粒子位置的上下限
% 粒子位置限制
        for i3 = 1:psize
            if pop(i2,i3) >= bound(i3,2)
                pop(i2,i3) = bound(i3,2);
            end
            if pop(i2,i3) <= bound(i3,1)
                pop(i2,i3) = bound(i3,1);
            end
        end

算法运行结果

这里写图片描述


平均适应度值和最优适应度值随着进化代数变化
这里写图片描述

对比之前用python实现的粒子群算法,python用了1.2秒左右,matlab却只用了0.6秒左右,而之前对比了python和matlab实现的遗传算法,python又比matlab要快,看来语言的快慢有时候并不是算法性能的绝对因素,算法的具体实现技巧也很关键!

对于量子粒子群算法,我没有找到与之直接相关的引用内容。量子粒子群算法是一种改进的粒子群算法,结合了量子计算的思想和粒子群算法的优势。它在搜索解空间时使用了量子位来表示粒子的位置和速度,以及量子态叠加和测量等操作。这样的设计使得量子粒子群算法具有更好的全局搜索能力和更快的收敛速度。 在Matlab实现量子粒子群算法可以通过定义适应度函数和调用相应的优化函数来完成。首先,你需要定义一个适应度函数,该函数根据粒子的位置计算其适应值。然后,你可以使用Matlab提供的优化函数,如"ga"或"fmincon",来调用量子粒子群算法进行优化。这些函数通常需要指定粒子的数量、学习因子、权重因子和最大迭代次数等参数。 以下是一个可能的量子粒子群算法Matlab实现的示例: ```matlab % 定义适应度函数 function fitnessValue = fitnessFunction(x) % 根据粒子的位置计算适应值 % ... end % 调用量子粒子群算法进行优化 N = 50; % 粒子数量 c1 = 2; % 学习因子1 c2 = 2; % 学习因子2 w = 0.7; % 权重因子 M = 100; % 最大迭代次数 D = 10; % 解空间维度 [xm, fv = PSO(fitnessFunction, N, c1, c2, w, M, D); ``` 这段代码中,`fitnessFunction`函数用于计算粒子的适应值,`N`表示粒子数量,`c1`和`c2`是学习因子,`w`是权重因子,`M`是最大迭代次数,`D`是解空间维度。最后,使用`PSO`函数调用量子粒子群算法进行优化,并返回最优解`xm`和最优适应值`fv`。 请注意,以上示例仅用于说明如何在Matlab实现量子粒子群算法,并没有直接引用到某个具体的参考内容。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值