HDU 2121 不定根最小树形图

题意:给你一张有向图,问是否能找出一个点,使得他到所有点的距离最小。

思路:还是不定根最小树形图,虚拟一个S作为根,与所有点相连,然后跑一遍朱刘算法。

至于找出这个点,我们将S与所有点都连起来的时候,是从小到大连的。所以这个边的编号是可以代表点的编号的。

例如n = 4 , m = 3 .那么在原来3条边的基础上,第4条边就是S->0 ,同理第n条。

所以在找点的时候我们可以只记录这个边的序号,最后输出的时候-m就可以了。

#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Max 2505
#define FI first
#define SE second
#define ll long long
#define PI acos(-1.0)
#define inf 0x3fffffff
#define LL(x) ( x << 1 )
#define bug puts("here")
#define PII pair<int,int>
#define RR(x) ( x << 1 | 1 )
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
using namespace std;
#define type ll
inline void RD(int &ret) {
    char c;
    int flag = 1 ;
    do {
        c = getchar();
        if(c == '-')flag = -1 ;
    } while(c < '0' || c > '9') ;
    ret = c - '0';
    while((c=getchar()) >= '0' && c <= '9')
        ret = ret * 10 + ( c - '0' );
    ret *= flag ;
}

inline void OT(int a) {
    if(a >= 10)OT(a / 10) ;
    putchar(a % 10 + '0') ;
}
inline void OT(double a){
    char x[111] ;
    sprintf(x , "%f" , a) ;
    puts(x) ;
}
inline void RD(double &ret) {
    char c ;
    int flag = 1 ;
    do {
        c = getchar() ;
        if(c == '-')flag = -1 ;
    } while(c < '0' || c > '9') ;
    ll n1 = c - '0' ;
    while((c = getchar()) >= '0' && c <= '9') {
        n1 = n1 * 10 + c - '0' ;
    }
    ll n2 = 1 ;
    while((c = getchar()) >= '0' && c <= '9') {
        n1 = n1 * 10 + c - '0' ;
        n2 *= 10 ;
    }
    ret = flag * (double)n1 / (double)(n2) ;
}
/*********************************************/

#define N 1005
#define M 10005
int n , m , S ;
struct ed{
    int s , e , l ;
    ed(){}
    ed(int _s ,int _e,int _l):s(_s),e(_e),l(_l){}
}E[M] ,EE[M] ;
int pre[N] , vis[N] , id[N] ;
type in[N] ;
int pos = -1 ;
type Directed_MST(int root , int NV ,int NE){
    type ret = 0 ;
    bool flag = 0 ;
    while(1){
        //最小边
        for (int i = 0 ; i < NV ; i ++ )in[i] = inf ;
        for (int i = 0 ; i < NE ; i ++ ){
            int s = E[i].s ;
            int e = E[i].e ;
            if(s != e && in[e] > E[i].l){
                in[e] = E[i].l ;
                pre[e] = s ;
                if(s == root){
                    pos = i ;
                }
            }
        }
        for (int i = 0 ; i < NV ; i ++ ){
            if(i == root)continue ;
            if(in[i] == inf)return -1 ;
        }
        int cntnode = 0 ;
        mem(vis , -1) ;
        mem(id, -1) ;
        in[root] = 0 ;
        //找环
        for (int i = 0 ; i < NV ; i ++ ){
            ret += in[i] ;
            int v = i ;
            while(vis[v] != i && id[v] == -1 && v != root){
                vis[v] = i ;
                v = pre[v] ;
            }
            if(v != root && id[v] == -1){
                for (int u = pre[v] ; u != v ; u = pre[u]){
                    id[u] = cntnode ;
                }
                id[v] = cntnode ++ ;
            }
        }
        if(cntnode == 0)break ;
        //缩点
        for (int i = 0 ; i < NV ; i ++ )if(id[i] == -1)id[i] = cntnode ++ ;
        for (int i = 0 ; i < NE ; i ++ ){
            int s = E[i].s ;
            int e = E[i].e ;
            E[i].s = id[s] ;
            E[i].e = id[e] ;
            if(id[s] != id[e]){
                E[i].l -= in[e] ;
            }
        }
        NV = cntnode ;
        root = id[root] ;
    }
    return ret ;
}
int main() {
    int flag = 0 ;
    while(cin >> n >> m){
        int fk = m ;
        pos = inf ;
        S = n ;
        for (int i = 0 ; i < m ; i ++ ){
            RD(E[i].s) ;RD(E[i].e) ; RD(E[i].l) ;
        }
        for (int i = 0 ; i < n ; i ++ ){
            E[m].s = S ; E[m].e = i ; E[m].l = inf - 1 ;
            m ++ ;
        }
        type ans = Directed_MST( n , n + 1 , m) ;
        if(ans == -1 || ans - inf + 1 >= inf - 1)puts("impossible") ;
        else cout << ans - inf + 1 << " " << pos - fk << endl ;
        puts("") ;
    }
    return 0 ;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值