题意:给你一张有向图,问是否能找出一个点,使得他到所有点的距离最小。
思路:还是不定根最小树形图,虚拟一个S作为根,与所有点相连,然后跑一遍朱刘算法。
至于找出这个点,我们将S与所有点都连起来的时候,是从小到大连的。所以这个边的编号是可以代表点的编号的。
例如n = 4 , m = 3 .那么在原来3条边的基础上,第4条边就是S->0 ,同理第n条。
所以在找点的时候我们可以只记录这个边的序号,最后输出的时候-m就可以了。
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Max 2505
#define FI first
#define SE second
#define ll long long
#define PI acos(-1.0)
#define inf 0x3fffffff
#define LL(x) ( x << 1 )
#define bug puts("here")
#define PII pair<int,int>
#define RR(x) ( x << 1 | 1 )
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
using namespace std;
#define type ll
inline void RD(int &ret) {
char c;
int flag = 1 ;
do {
c = getchar();
if(c == '-')flag = -1 ;
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
ret *= flag ;
}
inline void OT(int a) {
if(a >= 10)OT(a / 10) ;
putchar(a % 10 + '0') ;
}
inline void OT(double a){
char x[111] ;
sprintf(x , "%f" , a) ;
puts(x) ;
}
inline void RD(double &ret) {
char c ;
int flag = 1 ;
do {
c = getchar() ;
if(c == '-')flag = -1 ;
} while(c < '0' || c > '9') ;
ll n1 = c - '0' ;
while((c = getchar()) >= '0' && c <= '9') {
n1 = n1 * 10 + c - '0' ;
}
ll n2 = 1 ;
while((c = getchar()) >= '0' && c <= '9') {
n1 = n1 * 10 + c - '0' ;
n2 *= 10 ;
}
ret = flag * (double)n1 / (double)(n2) ;
}
/*********************************************/
#define N 1005
#define M 10005
int n , m , S ;
struct ed{
int s , e , l ;
ed(){}
ed(int _s ,int _e,int _l):s(_s),e(_e),l(_l){}
}E[M] ,EE[M] ;
int pre[N] , vis[N] , id[N] ;
type in[N] ;
int pos = -1 ;
type Directed_MST(int root , int NV ,int NE){
type ret = 0 ;
bool flag = 0 ;
while(1){
//最小边
for (int i = 0 ; i < NV ; i ++ )in[i] = inf ;
for (int i = 0 ; i < NE ; i ++ ){
int s = E[i].s ;
int e = E[i].e ;
if(s != e && in[e] > E[i].l){
in[e] = E[i].l ;
pre[e] = s ;
if(s == root){
pos = i ;
}
}
}
for (int i = 0 ; i < NV ; i ++ ){
if(i == root)continue ;
if(in[i] == inf)return -1 ;
}
int cntnode = 0 ;
mem(vis , -1) ;
mem(id, -1) ;
in[root] = 0 ;
//找环
for (int i = 0 ; i < NV ; i ++ ){
ret += in[i] ;
int v = i ;
while(vis[v] != i && id[v] == -1 && v != root){
vis[v] = i ;
v = pre[v] ;
}
if(v != root && id[v] == -1){
for (int u = pre[v] ; u != v ; u = pre[u]){
id[u] = cntnode ;
}
id[v] = cntnode ++ ;
}
}
if(cntnode == 0)break ;
//缩点
for (int i = 0 ; i < NV ; i ++ )if(id[i] == -1)id[i] = cntnode ++ ;
for (int i = 0 ; i < NE ; i ++ ){
int s = E[i].s ;
int e = E[i].e ;
E[i].s = id[s] ;
E[i].e = id[e] ;
if(id[s] != id[e]){
E[i].l -= in[e] ;
}
}
NV = cntnode ;
root = id[root] ;
}
return ret ;
}
int main() {
int flag = 0 ;
while(cin >> n >> m){
int fk = m ;
pos = inf ;
S = n ;
for (int i = 0 ; i < m ; i ++ ){
RD(E[i].s) ;RD(E[i].e) ; RD(E[i].l) ;
}
for (int i = 0 ; i < n ; i ++ ){
E[m].s = S ; E[m].e = i ; E[m].l = inf - 1 ;
m ++ ;
}
type ans = Directed_MST( n , n + 1 , m) ;
if(ans == -1 || ans - inf + 1 >= inf - 1)puts("impossible") ;
else cout << ans - inf + 1 << " " << pos - fk << endl ;
puts("") ;
}
return 0 ;
}