POJ 1080 Human Gene Functions DP

题目就不解释了。

这里讲一下转移方程,dp[i][j](匹配到字符串1的i位,字符串2的j位)=MAX(dp[i-1][j-1]+score[a[i]][b[j]](i,j位匹配),dp[i-1][j]+score[a[i]][](i位和'-'匹配),dp[i][j-1]+score[b[j]][ ](j位和'-'匹配));

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <stack>
#include <map>
#include <iomanip>
#define PI acos(-1.0)
#define Max 105
#define inf 1<<28
#define LL(x) (x<<1)
#define RR(x)(x<<1|1)
using namespace std;

int score[5][5]=
{
    {5,-1,-2,-1,-3},
    {-1,5,-3,-2,-4},
    {-2,-3,5,-2,-2},
    {-1,-2,-2,5,-1},
    {-3,-4,-2,-1,0}
};

int dp[Max][Max];
char str1[Max],str2[Max];

int MAX(int a,int b,int c)
{
    return max(max(a,b),c);
}

int judge(char a)
{
    if(a=='A')
    return 0;
    if(a=='C')
    return 1;
    if(a=='G')
    return 2;
    if(a=='T')
    return 3;
    if(a=='-')
    return 4;
}

int match(int  la,int lb)
{
    int i,j;
    for(i=1;i<=la;++i)
    dp[i][0]=dp[i-1][0]+score[judge(str1[i])][4];
    for(i=1;i<=lb;++i)
    dp[0][i]=dp[0][i-1]+score[judge(str2[i])][4];
    for(i=1;i<=la;i++)
    for(j=1;j<=lb;j++)
    {
        //1.str1[i]与str2[j]匹配
        //2.str1[i]与"-"匹配
        //3.str2[j]与"-"匹配
        dp[i][j]=MAX(dp[i-1][j-1]+score[judge(str1[i])][judge(str2[j])],dp[i-1][j]+score[judge(str1[i])][4],dp[i][j-1]+score[judge(str2[j])][4]);
    }

}

int main()
{
    int i,j,k,l,n,m;
    int l1,l2;
    scanf("%d",&n);

    while(n--)
    {
        scanf("%d%s",&l1,&str1[1]);
        scanf("%d%s",&l2,&str2[1]);
        match(l1,l2);
        cout<<dp[l1][l2]<<endl;
    }

    return 0;
}


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值