poj 1080 Human Gene Functions DP

题目链接:poj 1080

         给定两DNA串,给出对应基因的匹配值,问两串匹配的最大值为多少

         简单的DP,推出状态转移方程即可。dp[i][j]=max(dp[i][j-1]+v(-,s2[j]),dp[i-1][j]+v(s1[i],-),dp[i-1][j-1]+v(s1[i],s2[j]))

      

/*********************************************************************
  FileName: 1080.cpp
  Author: kojimai
  Created Time: 2014年08月06日 星期三 14时34分33秒
*********************************************************************/
/*
	给定两DNA串,并给出对应基因之间的匹配值,问两串匹配能得到的最大值是多少
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define FFF 105
char s1[FFF],s2[FFF];
int value[5][5]={
	5,-1,-2,-1,-3,
	-1,5,-3,-2,-4,
	-2,-3,5,-2,-2,
	-1,-2,-2,5,-1,
	-3,-4,-2,-1,-1000
};
int dp[FFF][FFF];
int h(char x)
{
	if(x=='A') return 0;
	else if(x=='C') return 1;
	else if(x=='G') return 2;
	else if(x=='T') return 3;
	else return 4;
}

int val(char h1,char h2)
{
	return value[h(h1)][h(h2)];
}
int main()
{
	int keng;
	scanf("%d",&keng);
	while(keng--)
	{
		int l1,l2;
		scanf("%d%s",&l1,s1);
		scanf("%d%s",&l2,s2);
		dp[0][0]=0;
		for(int i=1;i<=l1;i++)
			dp[i][0]=dp[i-1][0]+val(s1[i-1],'-');
		for(int i=1;i<=l2;i++)
			dp[0][i]=dp[0][i-1]+val('-',s2[i-1]);
		for(int i=1;i<=l1;i++)
		{
			for(int j=1;j<=l2;j++)
			{
				dp[i][j]=max(dp[i-1][j]+val(s1[i-1],'-'),dp[i][j-1]+val('-',s2[j-1]));
				dp[i][j]=max(dp[i][j],dp[i-1][j-1]+val(s1[i-1],s2[j-1]));
			}
		}
		/*for(int i=1;i<=l1;i++)
		{
			for(int j=1;j<=l2;j++)
				cout<<dp[i][j]<<' ';
			cout<<endl;
		}*/
		cout<<dp[l1][l2]<<endl;
	}
	return 0;
}

题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值