图像生成
文章平均质量分 91
羊飘
要么独处,要么庸俗
展开
-
ICLR2022 | ViT-VQGAN+:Vector-quantized Image Modeling with Improved VQGAN
ViT-VQGAN+:Vector-quantized Image Modeling with Improved VQGAN原创 2023-01-03 20:29:11 · 2675 阅读 · 2 评论 -
NeurIPS 2022 | MoVQ: 基于Modulating Quantized Vectors的高保真图像生成
NeurIPS 2022 | MoVQ: 基于Modulating Quantized Vectors的高保真图像生成原文标题:MoVQ: Modulating Quantized Vectors for High-Fidelity Image Generation原创 2022-12-14 17:17:40 · 1559 阅读 · 1 评论 -
ICML2018 | PixelSNAIL+:An Improved Autoregressive Generative Model
PixelSNAIL: An Improved Autoregressive Generative Model原创 2022-12-13 21:23:36 · 673 阅读 · 0 评论 -
BMVC2022 | HR-VQVAE:用于图像重建和生成的基于Hierarchical Residual Learning的VQVAE
BMVC2022 | HR-VQVAE:用于图像重建和生成的基于Hierarchical Residual Learning的VQVAE原文标题:Hierarchical Residual Learning Based Vector Quantized Variational Autoencoder for Image Reconstruction and Generation原创 2022-12-13 17:25:41 · 2083 阅读 · 1 评论 -
CVPR2021 | VQGAN+:Taming Transformers for High-Resolution Image Synthesis
CVPR2021 | VQGAN+:Taming Transformers for High-Resolution Image Synthesistransformer比CNN缺少了归纳偏置和局部性,但是更具表现力,但对于长序列(高分辨率图像),在计算上是不可性的。作者就是解决这个问题:使用cnn来学习图像成分的上下文信息,利用transformer在高分辨率图像中有效地建模它们的组件。原创 2022-12-11 17:32:14 · 5290 阅读 · 2 评论 -
Briefings in Bioinformatics2021 | DLGN+:基于GAN和强化学习的分子从头双目标性质生成
论文标题:De novo generation of dual-target ligands using adversarial training and reinforcement learningBriefings in Bioinformatics2021 | DLGN+:基于GAN和强化学习的分子从头双目标性质生成原创 2022-12-09 21:09:21 · 1922 阅读 · 1 评论 -
Briefings in Bioinformatics2021 | 从头药物设计的深度生成模型的综合性评估
Briefings in Bioinformatics2021 | 从头药物设计的深度生成模型的综合性评估论文标题:Comprehensive assessment of deep generative architectures for de novo drug design对于具有不同DL架构的生成模型,基于RL和gan的生成模型在与目标属性的一致性方面优于其他生成模型,更适合于特定目标任务。原创 2022-12-09 15:51:51 · 1112 阅读 · 1 评论 -
Briefings in Bioinformatics2021 | 药物挖掘分子设计--生成模型综述
原文标题:Molecular design in drug discovery: a comprehensive review of deep generative modelsBriefings in Bioinformatics2021 | 药物挖掘分子设计--生成模型综述原创 2022-12-08 20:40:43 · 1572 阅读 · 0 评论 -
详解VQVAE:Neural Discrete Representation Learning
详解VQVAE:Neural Discrete Representation Learning一些具有挑战性的任务,如few-shot learning,严重依赖从原始数据学习的表示,但在无监督的方式下训练的通用表示的有用性仍然远远不是主流方法。极大似然和重构误差是训练像素域无监督模型的两个常用目标,但它们的有用性取决于特征所用于的特定应用。目标:实现一个模型,在潜在空间中保留数据的重要特征,同时优化最大似然。最好的生成模型(通过对数似然度量)将是那些没有潜在功能但具有强大解码器的模型原创 2022-12-06 15:33:20 · 10215 阅读 · 0 评论