深度学习环境配置 pytorch

该博客介绍了如何通过命令行和图形界面安装NVIDIA驱动及CUDA,并详细阐述了验证CUDA版本的步骤,包括检查nvcc版本、修改bashrc文件以及确认CUDA路径。在遇到版本不一致问题时,提供了修改bashrc文件并将CUDA版本从8.0更新到10.0的解决方案,最后建议source bashrc文件以应用更改。
摘要由CSDN通过智能技术生成

1. 基础环境

  1. NVIDIA 驱动:安装方式采用命令行或者图形界面(update)
  2. cuda:bash方式安装
  3. 验证:nvcc -V  ||  torch.version.cuda 版本一致。
  • 如果nvcc -V版本不对,cat /usr/local/cuda/version.txt 以及 cd /usr/local && stat cuda

  • 再次验证:将bashrc文件中的cuda的8.0(错误版本)改为10.0(对应版本),再source一下

  • sudo gedit ~/.bashrc
    
    # 改为10.0
    export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
    export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
    
    source ~/.bashrc

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值