三角形的数量

常看到的一个数学题,在三角形的边上有若干个点,然后问可以有几个三角形。

题目

三角形的 2 条边上分别有 m 和 n 个点(不包括三角形的顶点),这些点分别同这两条边相对的顶点有连线,这样组成了一个复杂的图形,问这个图形中包含了多少个不同的三角形。

题解

一个排列组合题目。

考虑以 A 为顶点的三角形数量, 线段 [A1,B] 上任取 2 点,同 A 可以组成三角形,因此总数量为 C(n+2, 2)。与 [A1,B] 类似的线段,共有 m+1 条。总数为:\frac{(n+2)*(n+1)}{2}*(m+1)

考虑以 B 为顶点的三角形数量, 线段 [B1,A] 上任取 2 点,同 B 可以组成三角形,因此总数量为 C(m+2, 2)。与 [B1,A] 类似的线段,共有 n+1 条。总数为:\frac{(m+2)*(m+1)}{2}*(n+1)

这两种统计方法,有重复统计,即同时以 A,B 为顶点的三角形。这种三角形的数量为 (m+1)*(n+1) 个。

因此,总数为:\frac{(n+2)*(n+1)}{2}*(m+1)+\frac{(m+2)*(m+1)}{2}*(n+1)-(m+1)*(n+1)

举例

这样我们假设 m=1,n=2,这样可以构成如下图所示情况:

数学计算

根据上面的计算公式:

\frac{(n+2)*(n+1)}{2}*(m+1)=\frac{(2+2)*(2+1)}{2}*(1+1)=12

\frac{(m+2)*(m+1)}{2}*(n+1)=\frac{(1+2)*(1+1)}{2}*(2+1)=9

(m+1)*(n+1)=(1+1)*(2+1)=6

总数为:12+9+6=15。

手工统计

以 A 为顶点,线段 [A1,B] 上任取 2 点,组成的三角形

先统计单个三角形,有 3 个。如下图所示:

再统计两个三角形构成的新三角形,有 2 个。如下图所示:

再统计三个三角形构成的新三角形,有 1 个。如下图所示:

这样合计是:3+2+1=6 个。

以 A 为顶点,线段 [C,B] 上任取 2 点,组成的三角形

先统计单个三角形,有 3 个。如下图所示:

再统计两个三角形构成的新三角形,有 2 个。如下图所示:

再统计三个三角形构成的新三角形,有 1 个。如下图所示:

和上一个过程是一样的,合计也是 3+2+1=6 个。

这样以 A 为顶点的三角形一共有 6+6=12 个。

以 B 为顶点,线段 [B1,A] 上任取 2 点,组成的三角形

先统计单个三角形,有 2 个。如下图所示:

注意:标注为 1 的三角形被重复统计。

再统计两个三角形构成的新三角形,有 1 个。如下图所示:

注意:我们可以看出 \Delta ABB_{1} 其实已经被统计过了。

合计是 2+1=3 个。

以 B 为顶点,线段 [B2,A] 上任取 2 点,组成的三角形

注意:我们可以看出 \Delta ABB_{2} 其实已经被统计过了。

合计是 2+1=3 个。

以 B 为顶点,线段 [C,A] 上任取 2 点,组成的三角形

注意:我们可以看出 \Delta ABC 其实已经被统计过了。

合计是 2+1=3 个。

这样以 B 为顶点的三角形一共有 3+3+3=9 个。

重复统计的三角形

如上图所示,以 A 和 B 为顶点,再选择一个点,构成的三角形被重复统计。\Delta ABB_{1}, \Delta ABB_{2},\Delta ABB_{3},\Delta ABB_{4},\Delta ABA_{1},\Delta ABC,合计 6 个。

最终的手工统计数据为:12+9-6=15 个。

### Delaunay 三角剖分中计算三角形数量的方法 在 Delaunay 三角剖分中,计算生成的三角形数量可以通过理论推导以及实际实现来完成。以下是详细的说明: #### 理论基础 对于平面上的一组离散点集 \( P \),假设这些点满足一般位置条件(即任意三点不共线),则通过 Delaunay 三角剖分可以得到一系列互不重叠的三角形[^1]。如果点集中有 \( n \) 个点,则生成的三角形数量可以根据欧拉公式进行估算。 设: - \( V \): 点的数量 (\( |P| = n \)) - \( E \): 边的数量 - \( F \): 面(三角形)的数量 根据平面图的欧拉公式 \( V - E + F = 2 \)[^3],我们可以进一步分析三角剖分的特点。通常情况下,在 Delaunay 三角剖分中,边界上的边不会形成封闭区域,因此需要调整公式的应用范围。 最终得出结论:当点集位于凸包上时,Delaunay 三角剖分产生的三角形数量大约为 \( 2n - h - 2 \),其中 \( h \) 是点集构成的凸壳顶点数。 #### 实现方法 在具体实现过程中,可以直接统计由算法生成的有效三角形单元数目。例如 OpenCV 的 `Subdiv2D` 类提供了构建 Delaunay 三角剖分的功能[^4]。下面是一个简单的代码示例展示如何获取三角形总数: ```cpp #include <opencv2/opencv.hpp> #include <vector> int main() { std::vector<cv::Point2f> points = { /* 插入你的二维坐标 */ }; cv::Subdiv2D subdiv(cv::Rect(0, 0, 1000, 1000)); // 初始化细分对象 for(auto &pt : points){ subdiv.insert(pt); // 将每个点加入到子划分结构里 } std::vector<std::vector<cv::Point2f>> triangleList; subdiv.getTriangleList(triangleList); int numTriangles = triangleList.size(); // 获取三角形列表大小作为计数值 } ``` 上述程序片段展示了利用 OpenCV 库执行 Delaunay 三角化并提取三角形集合的过程。注意这里忽略了无穷远点的影响,仅保留有限域内的有效数据。 #### 特殊情况处理 需要注意的是,某些特殊场景下可能会引入额外的虚拟节点或者扩展至三维空间的情况,这可能会影响最终的结果判定标准[^2]。此时应依据实际情况修正模型参数设定。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值