AtCoder Beginner Contest 193 题解报告(先写 A ~ E,后面再写)

AtCoder Beginner Contest 193

https://atcoder.jp/contests/abc193/tasks

A - Discount

https://atcoder.jp/contests/abc193/tasks/abc193_a

老样子,A题还是签到题。题目要求计算折扣,要求答案的精度在 10^{-2} 以上。因此我们只需要输出的时候保留的小数点位数足够多就可以达到要求,比如保留 18 位。

#include <iostream>
#include <iomanip>
using namespace std;
int main() {
	int a,b;
	cin>>a>>b;
	double ans=100.0*(a-b)/a;
	cout<<fixed<<setprecision(18)<<ans<<"\n";
	return 0;
}

B - Play Snuke

https://atcoder.jp/contests/abc193/tasks/abc193_b

买东西,到第 i 个商店需要 a[i] 时间,价格为 p[i],每分钟库存减少一个。求最小价格。

一个简单的模拟题。难度还是在英文的理解上。

#include <iostream>
#include <iomanip>
using namespace std;
typedef long long ll;
const int MAXN=1e5+4;
ll a[MAXN];//分钟
ll p[MAXN];//价格
ll x[MAXN];//库存
int main() {
	int n;
	cin>>n;
	for (int i=1; i<=n; i++) {
		cin>>a[i]>>p[i]>>x[i];
	}
 
	ll ans=1e9+4;
	bool flag=false;
	for (int i=1; i<=n; i++) {
		if (x[i]>a[i]) {
			ans=min(ans, p[i]);
			flag=true;
		}
	}
 
	if (true==flag) {
		cout<<ans<<"\n";
	} else {
		cout<<"-1\n";
	}
 
	return 0;
}

C - Unexpressed

https://atcoder.jp/contests/abc193/tasks/abc193_c

给一个 N,求区间 [1, N] 中不能表示为 a^b 数的个数。a 和 b 不小于数字 2。

如果本题不看 N 的范围,那么我们可以直接穷举每个数据 i,测试 i 能否表示为 a^b。框架代码如下:

for (int i=1; i<=n; i++) {
    for (int a=2; a*a<=i; a++) {
        for (int b=2; b<=a; b++) {
        }
    }
}

这样代码的时间复杂度为 O(N*logN*logN)。但是考虑本题 N 为 10^{10},因此这样肯定是 TLE。

我们可以借鉴筛法来解决这个问题。

#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;

int main() {
	ll n;
	cin>>n;

	vector<bool> flag(1e5+4, false);
	ll ans=n;
	for (ll i=2; i*i<=n; i++) {
		if (flag[i]) {
			//已经标志过
			continue;
		}

		ll t=i*i;
		while (t<=n) {
			ans--;
			if (t<flag.size()) {
				flag[t]=true;
			}
			t*=i;
		}
	}

	cout<<ans<<"\n";

	return 0;
}

D - Poker

https://atcoder.jp/contests/abc193/tasks/abc193_d

看了一下题目,好像是组合数学问题,苍天啊。题目好长,英文看得脑壳疼。

根据题目的描述,我们可以推导出如下公式:

\left\{\begin{matrix} C_x*C_y & x \neq y\\ C_x*(C_x-1) & x = y \end{matrix}\right.,其中 C_i 表示的是没有翻开的牌 i。

#include <iostream>
#include <vector>
#include <numeric>
#include <iomanip>

using namespace std;
typedef long long ll;

ll check(string s) {
	vector<ll> cnt(10);
	ll res=0;
	for (int i=0; i<5; i++) {
		cnt[s[i]-'0']++;
	}
	for (int i=1; i<=9; i++) {
		ll t=i;
		while (cnt[i]--) {
			t*=10;
		}
		res+=t;
	}
	return res;
}

int main() {
	int k;
	string s, t;
	cin>>k>>s>>t;

	vector<ll> card(10, k);
	for (int i=0; i<4; i++) {
		card[s[i]-'0']--;
		card[t[i]-'0']--;
	}

	ll res = 9*k-8;
	ll tot = res*(res-1);
	ll ans=0;
	for (int i=1; i<=9; i++) {
		for (int j=1; j<=9; j++) {
			s[4] = '0'+i;
			t[4] = '0'+j;
			if (check(s)<=check(t)) {
				continue;
			}
			if (i==j) {
				ans += card[i]*(card[i]-1);
			} else {
				ans += card[i]*card[j];
			}
		}
	}

	cout<<fixed<<setprecision(18)<<1.0*ans/tot<<"\n";

	return 0;
}

E - Oversleeping

https://atcoder.jp/contests/abc193/tasks/abc193_e

题目推敲了半天,尼玛,就是中国剩余定理(Chinese Remainder Theorem, CRT)啊。直接利用 AtCoder 提供的 Math 包里的 crt 算法就可以了。

#include <bits/stdc++.h> 
#include <atcoder/math>

using namespace std;
typedef long long ll;

int main() {
	int t;
	cin>>t;
	while (t--) {
		ll x,y, p, q;
		cin>>x>>y>>p>>q;
		
		ll ans=LLONG_MAX;
		for (ll i=x; i<x+y; i++) {
			for (ll j=p; j<p+q; j++) {
				auto [t, lcm] = atcoder::crt({i, j}, {(x+y)*2, p+q});
				if (0==lcm) {
					continue;
				}
				ans = min(ans, t);
			}
		}
		
		if (ans==LLONG_MAX) {
			cout<<"infinity\n";
		} else {
			cout<<ans<<"\n";
		}
	}
	
	return 0;
}

 

AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值