markdown公式

markdown公式

自用留档
本文主要内容是,在markdown文档中输入数学公式时所需的主要语法和部分符号
不是所有的LaTex符号obsidian都支持渲染,本文所记录的符号均可在obsidian中正常显示。

行间公式 a + b = c a+b=c a+b=c

$a+b=c$

整行公式
a + b = c a+b=c a+b=c

$$
a+b=c
$$

希腊字母

名称大写tex小写tex
alpha A A AA α \alpha α\alpha
beta B B BB β \beta β\beta
gamma Γ \Gamma Γ\Gamma γ \gamma γ\gamma
delta Δ \Delta Δ\Delta δ \delta δ\delta
epsilon E E EE ϵ \epsilon ϵ\epsilon
ε \varepsilon ε\varepsilon
zeta Z Z ZZ ζ \zeta ζ\zeta
eta H H HH η \eta η\eta
theta Θ \Theta Θ\Theta θ \theta θ\theta
ϑ \vartheta ϑ\vartheta
iota I I II ι \iota ι\iota
kappa K K KK κ \kappa κ\kappa
lambda Λ \Lambda Λ\Lambda λ \lambda λ\lambda
mu M M MM μ \mu μ\mu
nu N N NN ν \nu ν\nu
xi Ξ \Xi Ξ\Xi ξ \xi ξ\xi
omicron O O OO ο \omicron ο\omicron
pi Π \Pi Π\Pi π \pi π\pi
ϖ \varpi ϖ\varpi
rho P P PP ρ \rho ρ\rho
ϱ \varrho ϱ\varrho
sigma Σ \Sigma Σ\Sigma σ \sigma σ\sigma
ς \varsigma ς\varsigma
tau T T TT τ \tau τ\tau
upsilon Υ \Upsilon Υ\Upsilon υ \upsilon υ\upsilon
phi Φ \Phi Φ\Phi ϕ \phi ϕ\phi
φ \varphi φ\varphi
chi X X XX χ \chi χ\chi
psi Ψ \Psi Ψ\Psi ψ \psi ψ\psi
omega Ω \Omega Ω\Omega ω \omega ω\omega

基本符号

× + − ÷ ⋅ ⊗ ⊕ \times \quad + \quad - \quad \div \quad \cdot \quad \otimes \quad \oplus \quad ×+÷

 \times \quad + \quad - \quad  \div \quad \cdot \quad \otimes \quad \oplus \quad

≠ = ≈ ∼ ≅ ≡ < > ≤ ≥ \neq \quad = \quad \approx \quad \sim \quad \cong \quad \equiv \quad \lt \quad \gt \quad \leq \quad \geq ==<>

\neq \quad = \quad \approx \quad \sim \quad \cong \quad 
\equiv \quad \lt \quad \gt \quad \leq \quad \geq

上标、下标

a 1 2 a 12 11 a 2 2 a_1^2 \quad a_{12}^{11} \quad {a^2}^2 a12a1211a22

a_1^2 \quad a_{12}^{11} \quad {a^2}^2 

括号

( a + b ) [ c + ( d − e ) ] { d d d } { d d d } (a+b)[c+(d-e)] \quad \{ddd\} \quad \lbrace ddd \rbrace (a+b)[c+(de)]{ddd}{ddd}

(a+b)[c+(d-e)] \quad \{ddd\} \quad \lbrace ddd \rbrace

⟨ x ⟩ ⌈ x ⌉ ⌊ x ⌋ \langle x \rangle \quad \lceil x \rceil \quad \lfloor x \rfloor xxx

\langle x \rangle \quad \lceil x \rceil \quad \lfloor x \rfloor

大型符号

∑ n = 1 ∞ 1 n 2 ∫ − ∞ x f ( t )   d t ∬ f ( x ) d x ∮ f ( x ) d x \sum_{n=1}^\infty{\frac{1}{n^2}} \quad \int_{-\infty}^{x}{f(t)\,\mathrm{d}t} \quad \iint f(x)dx \quad \oint f(x)dx n=1n21xf(t)dtf(x)dxf(x)dx

\sum_{n=1}^\infty{\frac{1}{n^2}} \quad 
\int_{-\infty}^{x}{f(t)\,\mathrm{d}t} \quad 
\iint f(x)dx \quad 
\oint f(x)dx

∫  ⁣ ⁣ ⁣ ∫ D f ( x , y ) d x d y lim ⁡ n → ∞ 1 n 2 − 1 ∏ ⋃ ⋂ \int\!\!\!\int_D f(x,y)\mathrm{d}x\mathrm{d}y \quad \lim_{n\to\infty}{\frac{1}{n^2-1}} \quad \prod \quad \bigcup \quad \bigcap Df(x,y)dxdynlimn211

 \int\!\!\!\int_D f(x,y)\mathrm{d}x\mathrm{d}y \quad
 \lim_{n\to\infty}{\frac{1}{n^2-1}} \quad
 \prod \quad \bigcup \quad \bigcap

d y d x ∂ z ∂ x ℑ [ C ] ℜ [ C ] \frac{\mathrm{d}y}{\mathrm{d}x} \quad \frac{\partial z}{\partial x} \quad \Im[C] \quad \Re[C] dxdyxz[C][C]

函数

sin ⁡ cos ⁡ tan ⁡ exp ⁡ log ⁡ lg ⁡ ln ⁡ max ⁡ min ⁡ \sin \quad \cos \quad \tan \quad \exp \quad \log \quad \lg \quad \ln \quad \max \quad \min \quad sincostanexploglglnmaxmin

\sin \quad \cos \quad \tan \quad \exp \quad
\log \quad \lg  \quad \ln  \quad \max \quad
\min \quad

大小括号

( ( ( ( ( ] ] ] ] ] \Bigg(\bigg(\Big(\big((\Bigg]\bigg]\Big]\big]] (((((]]]]]

\Bigg(\bigg(\Big(\big((\Bigg]\bigg]\Big]\big]]

分数

a + b c + d e + f g + h \frac{a+b}{c+d} \quad {e+f\over g+h} c+da+bg+he+f

\frac{a+b}{c+d} \quad {e+f\over g+h}

x = a 0 + 1 2 a 1 + 2 2 a 2 + 3 2 a 3 + 4 2 a 4 + ⋯ x = a 0 + 1 2 a 1 + 2 2 a 2 + 3 2 a 3 + 4 2 a 4 + ⋯ x=a_0 + \cfrac {1^2}{a_1 + \cfrac {2^2}{a_2 + \cfrac {3^2}{a_3 + \cfrac {4^2}{a_4 + \cdots}}}} \quad x=a_0 + \frac {1^2}{a_1 + \frac {2^2}{a_2 + \frac {3^2}{a_3 + \frac {4^2}{a_4 + \cdots}}}} x=a0+a1+a2+a3+a4+42322212x=a0+a1+a2+a3+a4+42322212

x=a_0 + \cfrac {1^2}{a_1 + \cfrac {2^2}{a_2 + \cfrac {3^2}{a_3 + \cfrac {4^2}{a_4 + \cdots}}}} \quad
x=a_0 + \frac {1^2}{a_1 + \frac {2^2}{a_2 + \frac {3^2}{a_3 + \frac {4^2}{a_4 + \cdots}}}}

根号

3 x y 3 \sqrt{3} \quad \sqrt[3]{\frac xy} 3 3yx

\sqrt{3} \quad \sqrt[3]{\frac xy}

矩阵

1 2 3 4 5 6 7 8 9 ( 1 2 3 4 5 6 7 8 9 ) [ 1 2 3 4 5 6 7 8 9 ] \begin{matrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{matrix} \quad \begin{pmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{pmatrix} \quad \begin{bmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{bmatrix} 147258369 147258369 147258369

\begin{matrix}
1&2&3\\
4&5&6\\
7&8&9
\end{matrix}
\quad
\begin{pmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{pmatrix}
\quad
\begin{bmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{bmatrix}

{ 1 2 3 4 5 6 7 8 9 } ∣ 1 2 3 4 5 6 7 8 9 ∣ ∥ 1 2 3 4 5 6 7 8 9 ∥ \begin{Bmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{Bmatrix} \quad \begin{vmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{vmatrix} \quad \begin{Vmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{Vmatrix} \quad 147258369 147258369 147258369

\begin{matrix}
1&2&3\\
4&5&6\\
7&8&9
\end{matrix}
\quad
\begin{pmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{pmatrix}
\quad
\begin{bmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{bmatrix}

( 1 a 1 a 1 2 ⋯ a 1 n 1 a 2 a 2 2 ⋯ a 2 n ⋮ ⋮ ⋮ ⋱ ⋮ 1 a m a m 2 ⋯ a m n ) \begin{pmatrix} 1&a_1&a_1^2&\cdots&a_1^n\\ 1&a_2&a_2^2&\cdots&a_2^n\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&a_m&a_m^2&\cdots&a_m^n\\ \end{pmatrix} 111a1a2ama12a22am2a1na2namn

\begin{pmatrix}
1&a_1&a_1^2&\cdots&a_1^n\\
1&a_2&a_2^2&\cdots&a_2^n\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
1&a_m&a_m^2&\cdots&a_m^n\\
\end{pmatrix}

多行公式

f ( x ) = 6 x 6 + 5 x 5 + 4 x 4 + 3 x 3 + 2 x 2 + x \begin{split} f(x)=6x^6+5x^5+4x^4\\+3x^3+2x^2+x \end{split} f(x)=6x6+5x5+4x4+3x3+2x2+x

\begin{split}
f(x)=6x^6+5x^5+4x^4\\+3x^3+2x^2+x
\end{split}

{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left \{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

\left \{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\ 
a_2x+b_2y+c_2z=d_2 \\ 
a_3x+b_3y+c_3z=d_3
\end{array}
\right.

a 1 x + b 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \begin{align} &a_1x+b_1z=d_1 \\ &a_2x+b_2y+c_2z=d_2 \\ &a_3x+b_3y+c_3z=d_3 \end{align} a1x+b1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

\begin{align}
&a_1x+b_1z=d_1 \\ 
&a_2x+b_2y+c_2z=d_2 \\ 
&a_3x+b_3y+c_3z=d_3
\end{align}

a 1 x + b 1 y z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \begin{align} a_1x+b_1yz=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{align} a1x+b1yz=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

\begin{align}
a_1x+b_1yz=d_1 \\ 
a_2x+b_2y+c_2z=d_2 \\ 
a_3x+b_3y+c_3z=d_3
\end{align}

f ( n ) = { n 2 , i f   n   i s   e v e n 3 n + 1 , i f   n   i s   o d d f(n)= \begin{cases} \cfrac n2, &if\ n\ is\ even\\[5ex] 3n + 1, &if\ n\ is\ odd \end{cases} f(n)= 2n,3n+1,if n is evenif n is odd

f(n)=
\begin{cases}
\cfrac n2, &if\ n\ is\ even\\[5ex]
3n + 1, &if\  n\ is\ odd
\end{cases}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

弄曲幽篁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值