markdown公式
自用留档
本文主要内容是,在markdown文档中输入数学公式时所需的主要语法和部分符号。
不是所有的LaTex符号obsidian都支持渲染,本文所记录的符号均可在obsidian中正常显示。
行间公式 a + b = c a+b=c a+b=c
$a+b=c$
整行公式
a
+
b
=
c
a+b=c
a+b=c
$$
a+b=c
$$
希腊字母
名称 | 大写 | tex | 小写 | tex |
---|---|---|---|---|
alpha | A A A | A | α \alpha α | \alpha |
beta | B B B | B | β \beta β | \beta |
gamma | Γ \Gamma Γ | \Gamma | γ \gamma γ | \gamma |
delta | Δ \Delta Δ | \Delta | δ \delta δ | \delta |
epsilon | E E E | E | ϵ \epsilon ϵ | \epsilon |
ε \varepsilon ε | \varepsilon | |||
zeta | Z Z Z | Z | ζ \zeta ζ | \zeta |
eta | H H H | H | η \eta η | \eta |
theta | Θ \Theta Θ | \Theta | θ \theta θ | \theta |
ϑ \vartheta ϑ | \vartheta | |||
iota | I I I | I | ι \iota ι | \iota |
kappa | K K K | K | κ \kappa κ | \kappa |
lambda | Λ \Lambda Λ | \Lambda | λ \lambda λ | \lambda |
mu | M M M | M | μ \mu μ | \mu |
nu | N N N | N | ν \nu ν | \nu |
xi | Ξ \Xi Ξ | \Xi | ξ \xi ξ | \xi |
omicron | O O O | O | ο \omicron ο | \omicron |
pi | Π \Pi Π | \Pi | π \pi π | \pi |
ϖ \varpi ϖ | \varpi | |||
rho | P P P | P | ρ \rho ρ | \rho |
ϱ \varrho ϱ | \varrho | |||
sigma | Σ \Sigma Σ | \Sigma | σ \sigma σ | \sigma |
ς \varsigma ς | \varsigma | |||
tau | T T T | T | τ \tau τ | \tau |
upsilon | Υ \Upsilon Υ | \Upsilon | υ \upsilon υ | \upsilon |
phi | Φ \Phi Φ | \Phi | ϕ \phi ϕ | \phi |
φ \varphi φ | \varphi | |||
chi | X X X | X | χ \chi χ | \chi |
psi | Ψ \Psi Ψ | \Psi | ψ \psi ψ | \psi |
omega | Ω \Omega Ω | \Omega | ω \omega ω | \omega |
基本符号
× + − ÷ ⋅ ⊗ ⊕ \times \quad + \quad - \quad \div \quad \cdot \quad \otimes \quad \oplus \quad ×+−÷⋅⊗⊕
\times \quad + \quad - \quad \div \quad \cdot \quad \otimes \quad \oplus \quad
≠ = ≈ ∼ ≅ ≡ < > ≤ ≥ \neq \quad = \quad \approx \quad \sim \quad \cong \quad \equiv \quad \lt \quad \gt \quad \leq \quad \geq ==≈∼≅≡<>≤≥
\neq \quad = \quad \approx \quad \sim \quad \cong \quad
\equiv \quad \lt \quad \gt \quad \leq \quad \geq
上标、下标
a 1 2 a 12 11 a 2 2 a_1^2 \quad a_{12}^{11} \quad {a^2}^2 a12a1211a22
a_1^2 \quad a_{12}^{11} \quad {a^2}^2
括号
( a + b ) [ c + ( d − e ) ] { d d d } { d d d } (a+b)[c+(d-e)] \quad \{ddd\} \quad \lbrace ddd \rbrace (a+b)[c+(d−e)]{ddd}{ddd}
(a+b)[c+(d-e)] \quad \{ddd\} \quad \lbrace ddd \rbrace
⟨ x ⟩ ⌈ x ⌉ ⌊ x ⌋ \langle x \rangle \quad \lceil x \rceil \quad \lfloor x \rfloor ⟨x⟩⌈x⌉⌊x⌋
\langle x \rangle \quad \lceil x \rceil \quad \lfloor x \rfloor
大型符号
∑ n = 1 ∞ 1 n 2 ∫ − ∞ x f ( t ) d t ∬ f ( x ) d x ∮ f ( x ) d x \sum_{n=1}^\infty{\frac{1}{n^2}} \quad \int_{-\infty}^{x}{f(t)\,\mathrm{d}t} \quad \iint f(x)dx \quad \oint f(x)dx n=1∑∞n21∫−∞xf(t)dt∬f(x)dx∮f(x)dx
\sum_{n=1}^\infty{\frac{1}{n^2}} \quad
\int_{-\infty}^{x}{f(t)\,\mathrm{d}t} \quad
\iint f(x)dx \quad
\oint f(x)dx
∫ ∫ D f ( x , y ) d x d y lim n → ∞ 1 n 2 − 1 ∏ ⋃ ⋂ \int\!\!\!\int_D f(x,y)\mathrm{d}x\mathrm{d}y \quad \lim_{n\to\infty}{\frac{1}{n^2-1}} \quad \prod \quad \bigcup \quad \bigcap ∫∫Df(x,y)dxdyn→∞limn2−11∏⋃⋂
\int\!\!\!\int_D f(x,y)\mathrm{d}x\mathrm{d}y \quad
\lim_{n\to\infty}{\frac{1}{n^2-1}} \quad
\prod \quad \bigcup \quad \bigcap
d y d x ∂ z ∂ x ℑ [ C ] ℜ [ C ] \frac{\mathrm{d}y}{\mathrm{d}x} \quad \frac{\partial z}{\partial x} \quad \Im[C] \quad \Re[C] dxdy∂x∂zℑ[C]ℜ[C]
函数
sin cos tan exp log lg ln max min \sin \quad \cos \quad \tan \quad \exp \quad \log \quad \lg \quad \ln \quad \max \quad \min \quad sincostanexploglglnmaxmin
\sin \quad \cos \quad \tan \quad \exp \quad
\log \quad \lg \quad \ln \quad \max \quad
\min \quad
大小括号
( ( ( ( ( ] ] ] ] ] \Bigg(\bigg(\Big(\big((\Bigg]\bigg]\Big]\big]] (((((]]]]]
\Bigg(\bigg(\Big(\big((\Bigg]\bigg]\Big]\big]]
分数
a + b c + d e + f g + h \frac{a+b}{c+d} \quad {e+f\over g+h} c+da+bg+he+f
\frac{a+b}{c+d} \quad {e+f\over g+h}
x = a 0 + 1 2 a 1 + 2 2 a 2 + 3 2 a 3 + 4 2 a 4 + ⋯ x = a 0 + 1 2 a 1 + 2 2 a 2 + 3 2 a 3 + 4 2 a 4 + ⋯ x=a_0 + \cfrac {1^2}{a_1 + \cfrac {2^2}{a_2 + \cfrac {3^2}{a_3 + \cfrac {4^2}{a_4 + \cdots}}}} \quad x=a_0 + \frac {1^2}{a_1 + \frac {2^2}{a_2 + \frac {3^2}{a_3 + \frac {4^2}{a_4 + \cdots}}}} x=a0+a1+a2+a3+a4+⋯42322212x=a0+a1+a2+a3+a4+⋯42322212
x=a_0 + \cfrac {1^2}{a_1 + \cfrac {2^2}{a_2 + \cfrac {3^2}{a_3 + \cfrac {4^2}{a_4 + \cdots}}}} \quad
x=a_0 + \frac {1^2}{a_1 + \frac {2^2}{a_2 + \frac {3^2}{a_3 + \frac {4^2}{a_4 + \cdots}}}}
根号
3 x y 3 \sqrt{3} \quad \sqrt[3]{\frac xy} 33yx
\sqrt{3} \quad \sqrt[3]{\frac xy}
矩阵
1 2 3 4 5 6 7 8 9 ( 1 2 3 4 5 6 7 8 9 ) [ 1 2 3 4 5 6 7 8 9 ] \begin{matrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{matrix} \quad \begin{pmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{pmatrix} \quad \begin{bmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{bmatrix} 147258369 147258369 147258369
\begin{matrix}
1&2&3\\
4&5&6\\
7&8&9
\end{matrix}
\quad
\begin{pmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{pmatrix}
\quad
\begin{bmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{bmatrix}
{ 1 2 3 4 5 6 7 8 9 } ∣ 1 2 3 4 5 6 7 8 9 ∣ ∥ 1 2 3 4 5 6 7 8 9 ∥ \begin{Bmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{Bmatrix} \quad \begin{vmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{vmatrix} \quad \begin{Vmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{Vmatrix} \quad ⎩ ⎨ ⎧147258369⎭ ⎬ ⎫ 147258369 147258369
\begin{matrix}
1&2&3\\
4&5&6\\
7&8&9
\end{matrix}
\quad
\begin{pmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{pmatrix}
\quad
\begin{bmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{bmatrix}
( 1 a 1 a 1 2 ⋯ a 1 n 1 a 2 a 2 2 ⋯ a 2 n ⋮ ⋮ ⋮ ⋱ ⋮ 1 a m a m 2 ⋯ a m n ) \begin{pmatrix} 1&a_1&a_1^2&\cdots&a_1^n\\ 1&a_2&a_2^2&\cdots&a_2^n\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&a_m&a_m^2&\cdots&a_m^n\\ \end{pmatrix} 11⋮1a1a2⋮ama12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
\begin{pmatrix}
1&a_1&a_1^2&\cdots&a_1^n\\
1&a_2&a_2^2&\cdots&a_2^n\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
1&a_m&a_m^2&\cdots&a_m^n\\
\end{pmatrix}
多行公式
f ( x ) = 6 x 6 + 5 x 5 + 4 x 4 + 3 x 3 + 2 x 2 + x \begin{split} f(x)=6x^6+5x^5+4x^4\\+3x^3+2x^2+x \end{split} f(x)=6x6+5x5+4x4+3x3+2x2+x
\begin{split}
f(x)=6x^6+5x^5+4x^4\\+3x^3+2x^2+x
\end{split}
{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left \{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. ⎩ ⎨ ⎧a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
\left \{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
a 1 x + b 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \begin{align} &a_1x+b_1z=d_1 \\ &a_2x+b_2y+c_2z=d_2 \\ &a_3x+b_3y+c_3z=d_3 \end{align} a1x+b1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
\begin{align}
&a_1x+b_1z=d_1 \\
&a_2x+b_2y+c_2z=d_2 \\
&a_3x+b_3y+c_3z=d_3
\end{align}
a 1 x + b 1 y z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \begin{align} a_1x+b_1yz=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{align} a1x+b1yz=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
\begin{align}
a_1x+b_1yz=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{align}
f ( n ) = { n 2 , i f n i s e v e n 3 n + 1 , i f n i s o d d f(n)= \begin{cases} \cfrac n2, &if\ n\ is\ even\\[5ex] 3n + 1, &if\ n\ is\ odd \end{cases} f(n)=⎩ ⎨ ⎧2n,3n+1,if n is evenif n is odd
f(n)=
\begin{cases}
\cfrac n2, &if\ n\ is\ even\\[5ex]
3n + 1, &if\ n\ is\ odd
\end{cases}