[THUPC2018]密码学第三次小作业

题目描述

给定 c 1 , c 2 , e 1 , e 2 , N c1,c2,e1,e2,N c1,c2,e1,e2,N,构造一个数 m m m满足:

c 1 = m e 1 % N c1=m^{e1}\%N c1=me1%N
c 2 = m e 2 % N c2=m^{e2}\%N c2=me2%N
或者报告无解。

其中 g c d ( e 1 , e 2 ) = 1 gcd(e1,e2)=1 gcd(e1,e2)=1

解题思路

因为 g c d ( e 1 , e 2 ) = 1 gcd(e1,e2)=1 gcd(e1,e2)=1,由裴蜀定理,必然存在 s , t s,t s,t s × e 1 + t × e 2 = 1 s\times e1+t\times e2=1 s×e1+t×e2=1

可用 e x g c d exgcd exgcd求解。

那么 m = m s × e 1 + t × e 2 = m s × e 1 × m t × e 2 = c 1 s c 2 t m = m^{s\times e1+t\times e2}=m^{s\times e1}\times m^{t\times e2}=c1^{s}c2^{t} m=ms×e1+t×e2=ms×e1×mt×e2=c1sc2t

注意 s s s为负的情况需要特殊处理一下。

#include<bits/stdc++.h>
using namespace std;
#define int long long
int mul(int a,int b,int mod)
{
	int res=0;
	while(b)
	{
		if(b&1)res=(res+a)%mod;
		a=(a+a)%mod;
		b>>=1;
	}
	return res;
}
void exgcd(int a,int b,int &x,int &y)
{
	if(!b)
	{
		x=1;y=0;
		return;
	}
	exgcd(b,a%b,y,x);
	y=y-(a/b)*x;
}
int Pow(int a,int b,int mod)
{
	int res=1;
	while(b)
	{
		if(b&1)res=mul(res,a,mod);
		a=mul(a,a,mod);
		b>>=1;
	}
	return res;
}
int Inv(int x,int mod)
{
	int a=0,b=0;
	exgcd(x,mod,a,b);
	return (a%mod+mod)%mod;
}
void solve()
{
	int c1,c2,e1,e2,N;
	scanf("%lld %lld %lld %lld %lld",&c1,&c2,&e1,&e2,&N);
	int s=0,t=0;
	exgcd(e1,e2,s,t);
	int A=1,B=1;
	if(s<0)c1=Inv(c1,N),s=-s;
	if(t<0)c2=Inv(c2,N),t=-t;
	A=Pow(c1,s,N);B=Pow(c2,t,N);
	printf("%lld\n",mul(A,B,N));
	
}
signed main()
{
	int T;
	cin>>T;
	while(T--)
	{
		solve();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值