Mapreduce做中位数和标准差

本文介绍如何利用MapReduce实现中位数和标准差的计算。首先定义了一个实现了Writable接口的自定义值类型来存储数据,接着详细展示了MapReduce程序的代码实现。虽然作者近期才开始接触MapReduce,但已给出了初步的实现,尽管可能存在不足。
摘要由CSDN通过智能技术生成

利用Mapreduece做中位数和标准差
先定义一个自定义的值类型,实现Writable接口
然后去存储数据
话不多说 附上代码:

package com.standard1;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class IntPair implements Writable {
   
    private float ave = 0;
    private float deviation = 0;
    public void IntPair(){
   

    }
    public void IntPair(float ave,float deviation){
   
        this.ave = ave;
        this.deviation = deviation;
    }

    public float getAve() {
   
        return ave;
    }

    public float getDeviation() {
   
        return deviation;
    }

    public void setAve(float ave) {
   
        this.ave = ave;
    }

    public void setDeviation(float deviation) {
   
        this.deviation = deviation;
    }
    public void write(DataOutput out)throws IOException {
   
        out.writeFloat(ave);
        out.writeFloat(deviation);
    }
    public void readFields(DataInput in)t
MapReduce是一种用于处理大数据集的分布式计算模型。要求在MapReduce模型中求解中位数,可以参考以下步骤: 1. Map阶段:将输入的数据划分为小块,并在每块数据上执行映射操作。对于每个映射操作,可以将数据分为键值对,其中键是一个标识数据所在的块,值是块中的元素。 2. Shuffle和Sort阶段:将Map阶段得到的键值对根据键进行分组,并按照键进行排序。这可以保证具有相同键的数据会被发送到同一个Reduce任务进行处理。 3. Reduce阶段:对于每个Reduce任务,输入是按照键排序的键值对列表。在Reduce阶段,可以对每个键值对列表计算中位数。具体的求解中位数的方法可以有多种。 一种常用的方法是: - 将键值对列表按照值进行排序。 - 通过遍历键值对列表找到中位数。如果列表长度为奇数,则中位数位置为(列表长度+1)/2;如果列表长度为偶数,则中位数位置为列表长度/2和(列表长度/2+1)的平均值。 - 输出中位数作为Reduce任务的结果。 4. 最后,可以将所有Reduce任务的结果汇总起来得到整个数据集的中位数。 需要注意的是,MapReduce模型适用于大规模数据集,因此在处理中位数时需要将数据划分为合适的块,并设计合理的算法来保证处理效率和准确性。以上是简要的过程描述,具体的实现可以根据数据的特点和计算需求进行进一步优化和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值