空间数据挖掘中的知识发现与表示
在空间数据挖掘(SDM)领域,知识的发现和表示是至关重要的环节。SDM致力于从空间数据中挖掘出有价值的信息,这些信息以“规则 + 例外”的模式呈现,涵盖了多种类型的规则和例外情况。
1. SDM与知识模式
SDM是从空间数据中发现和提取模式,并将其转换为具有视角的空间知识的过程。知识通常以“规则 + 例外”或“类 + 离群值”的模式存在。
1.1 规则与例外的概念
- 规则 :包括一般性规则和个体性规则,比如关联、特征、判别、聚类、分类、序列、预测和功能依赖等。
- 例外 :指规则的偏差,是从常见规则中孤立出来或由其他数据观察得出的异常情况。
1.2 空间数据挖掘的意义
SDM利用人类的综合认知,将单个对象转化为通用知识库,从具体数据抽象出模式,使用户能够整体把控空间数据集,把握数据本质。
2. 可发现的空间知识类型
从空间数据集中可以发现多种类型的知识,这些知识遵循“规则 + 例外”的模式,且与SDM任务类型相关。以下是常见的空间知识类型:
| 知识类型 | 解释 | 示例 |
| ---- | ---- | ---- |
| 关联规则 | 不同实体集之间的逻辑关联,用于研究数据库中项目同时出现的频率 | 雨(位置,雨量)⇒ 滑坡(位置,发生),支持度76%,置信度98%,兴趣度51% |
| 特征规则 | 一种或多种实体的共同特征,用于总结目标类中对象的相似特征 | 描述北京大