Java数据结构——平衡二叉树

平衡二叉树是在二叉排序树的基础上,对左子树、右子树的高度进行变化,使得二叉树中所有的左子树高度与右子树高度之差小于等于1。平衡二叉树比二叉排序树更方便查找,降低了复杂度。

左旋操作:

  1. 创建新的结点,值为根结点;
  2. 将根结点的左子树设为新结点的左子树;
  3. 将根结点右子树的左子树设为新结点的右子树;
  4. 将根结点的值设为根结点的右子树;
  5. 将根结点的右子树设为右子树的右子树;
  6. 将根结点的左子树设为新结点

右旋操作:

  1. 创建新的结点,值为根结点;
  2. 将根结点的右子树设为新结点的右子树;
  3. 将根结点左子树的右子树设为新结点的左子树;
  4. 将根结点的值设为根结点的左子树;
  5. 将根结点的左子树设为左子树的左子树;
  6. 将根结点的右子树设为新结点

public class Main {
    public static void main(String[] args) {
        int[] arr = {11, 10, 6, 2, 4, 17, 22, 25, 35};
        AVLTree tree = new AVLTree();
        for (int i = 0; i < arr.length; i++) {
            tree.add(new Node(arr[i]));
        }
        System.out.println("平衡二叉树为:");
        tree.infixOrder();
        System.out.println("左子树高度为:" + tree.getRoot().leftHeight());
        System.out.println("右子树高度为:" + tree.getRoot().rightHeight());
    }

}

//二叉排序树类
class AVLTree {
    private Node root;

    public Node getRoot() {
        return root;
    }

    //查找要删除的结点
    public Node searchNode(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchNode(value);
        }
    }

    //查找要删除结点的父结点
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    //    查找删除结点右子树的最小值
    public int delRightMin(Node node) {
        Node minNode = node;
        while (minNode.left != null) {
//            循环查找左子结点,最左结点为最小值
            minNode = minNode.left;
        }
//        删除最小结点
        delNode(minNode.value);
        return minNode.value;
    }

    //删除结点
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            Node node = searchNode(value);
            Node parent = searchParent(value);
            //如果找不到要删除的结点,退出方法
            if (node == null) {
                return;
            }
            //只有一个结点,该结点为根结点,则该结点一定会被删除
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            //如果要删除的结点为叶子结点
            if (node.left == null && node.right == null) {
                //判断叶子结点为左子结点还是右子结点
                if (parent.left != null && parent.left.value == value) {
                    parent.left = null;
                    return;
                } else if (parent.right != null && parent.right.value == value) {
                    parent.right = null;
                    return;
                }
            } else if (node.left != null && node.right != null) {
//                要删除的结点有两颗子树
//                找到要删除结点右子树的最小结点
                node.value = delRightMin(node.right);
            } else {
//                要删除的结点有一颗子树
                if (root.value == value) {
//                    当删除结点为根结点
                    if (root.left != null) {
                        root = root.left;
                    } else {
                        root = root.right;
                    }
                } else if (parent.left == node) {
//                    删除结点为左子结点
                    if (node.left != null) {
//                       删除的结点有左子树
                        parent.left = node.left;
                    } else {
//                        删除的结点有右子树
                        parent.left = node.right;
                    }
                } else {
//                    删除的结点为右子结点
                    if (node.left != null) {
                        parent.right = node.left;
                    } else {
                        parent.right = node.right;
                    }
                }
            }
        }
    }

    //    添加结点
    public void add(Node node) {
        if (root == null) {
            root = node;
        } else {
            root.add(node);
        }
    }

    //    中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }

}

//结点类
class Node {
    public int value;
    public Node left;
    public Node right;

    public Node(int value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //    平衡二叉树左旋方法
    public void leftRotate() {
//        创建新的结点,值为根结点
        Node newNode = new Node(this.value);
//        将根结点的左子树设为新结点的左子树
        newNode.left = this.left;
//        将根结点右子树的左子树设为新结点的右子树
        newNode.right = this.right.left;
//        将根结点的值设为根结点的右子树
        this.value = this.right.value;
//        将根结点的右子树设为右子树的右子树
        this.right = this.right.right;
//        将根结点的左子树设为新结点
        this.left = newNode;
    }

    //    平衡二叉树右旋方法
    public void rightRotate() {
//        创建新的结点,值为根结点
        Node newNode = new Node(this.value);
//        将根结点的右子树设为新结点的右子树
        newNode.right = this.right;
//        将根结点左子树的右子树设为新结点的左子树
        newNode.left = this.left.right;
//        将根结点的值设为根结点的左子树
        this.value = this.left.value;
//        将根结点的左子树设为左子树的左子树
        this.left = this.left.left;
//        将根结点的右子树设为新结点
        this.right = newNode;
    }

    //    返回左子树的高度
    public int leftHeight() {
        if (this.left == null) {
            return 0;
        } else {
            return this.left.height();
        }
    }

    //    返回右子树的高度
    public int rightHeight() {
        if (this.right == null) {
            return 0;
        } else {
            return this.right.height();
        }
    }

    //    返回当前结点的高度
    public int height() {
        return Math.max(this.left == null ? 0 : this.left.height(), this.right == null ? 0 : this.right.height()) + 1;
    }

    //查找结点,返回值为该结点,如果找不到,返回null
    public Node searchNode(int value) {
        if (value == this.value) {
            return this;
        } else if (value < this.value) {
            if (this.left == null) {
                return null;
            }
            return this.left.searchNode(value);
        } else {
            if (this.right == null) {
                return null;
            }
            return this.right.searchNode(value);
        }
    }

    //查找要删除结点的父结点
    public Node searchParent(int value) {
        if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
            return this;
        } else {
            if (this.left != null && value < this.value) {
                return this.left.searchParent(value);
            } else if (this.right != null && value >= this.value) {
                return this.right.searchParent(value);
            } else {
                return null;
            }
        }
    }

    //    添加结点
    public void add(Node node) {
        if (node == null) {
            return;
        }
        if (node.value < this.value) {
//            如果左子结点为空,则直接放在左子结点的位置上
            if (this.left == null) {
                this.left = node;
            } else {
//                左子结点不为空时,进行递归
                this.left.add(node);
            }
        } else {
            if (this.right == null) {
                this.right = node;
            } else {
                this.right.add(node);
            }
        }
//        添加结点之后,如果右子树的高度 - 左子树的高度 > 1
        if (this.rightHeight() - this.leftHeight() > 1) {
//            如果当前结点的右子树的左子树的高度大于右子树的右子树,右子树进行右旋
            if (this.right != null && this.right.leftHeight() > this.right.rightHeight()) {
                this.right.rightRotate();
//                当前结点进行左旋
                this.leftRotate();
            } else {
                this.leftRotate();
            }
        }

//        添加结点之后,如果左子树的高度 - 右子树的高度 > 1
        if (this.leftHeight() - this.rightHeight() > 1) {
//            如果当前结点的左子树的右子树的高度大于左子树的左子树,左子树进行左旋
            if (this.left != null && this.left.rightHeight() > this.left.leftHeight()) {
                this.left.leftRotate();
//                当前结点进行右旋
                this.rightRotate();
            } else {
                this.rightRotate();
            }
        }
    }

    //    中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }

}
平衡二叉树为:
Node{value=2}
Node{value=4}
Node{value=6}
Node{value=10}
Node{value=11}
Node{value=17}
Node{value=22}
Node{value=25}
Node{value=35}
左子树高度为:2
右子树高度为:3

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值