平衡二叉树是在二叉排序树的基础上,对左子树、右子树的高度进行变化,使得二叉树中所有的左子树高度与右子树高度之差小于等于1。平衡二叉树比二叉排序树更方便查找,降低了复杂度。
左旋操作:
- 创建新的结点,值为根结点;
- 将根结点的左子树设为新结点的左子树;
- 将根结点右子树的左子树设为新结点的右子树;
- 将根结点的值设为根结点的右子树;
- 将根结点的右子树设为右子树的右子树;
- 将根结点的左子树设为新结点
右旋操作:
- 创建新的结点,值为根结点;
- 将根结点的右子树设为新结点的右子树;
- 将根结点左子树的右子树设为新结点的左子树;
- 将根结点的值设为根结点的左子树;
- 将根结点的左子树设为左子树的左子树;
- 将根结点的右子树设为新结点
public class Main {
public static void main(String[] args) {
int[] arr = {11, 10, 6, 2, 4, 17, 22, 25, 35};
AVLTree tree = new AVLTree();
for (int i = 0; i < arr.length; i++) {
tree.add(new Node(arr[i]));
}
System.out.println("平衡二叉树为:");
tree.infixOrder();
System.out.println("左子树高度为:" + tree.getRoot().leftHeight());
System.out.println("右子树高度为:" + tree.getRoot().rightHeight());
}
}
//二叉排序树类
class AVLTree {
private Node root;
public Node getRoot() {
return root;
}
//查找要删除的结点
public Node searchNode(int value) {
if (root == null) {
return null;
} else {
return root.searchNode(value);
}
}
//查找要删除结点的父结点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}
// 查找删除结点右子树的最小值
public int delRightMin(Node node) {
Node minNode = node;
while (minNode.left != null) {
// 循环查找左子结点,最左结点为最小值
minNode = minNode.left;
}
// 删除最小结点
delNode(minNode.value);
return minNode.value;
}
//删除结点
public void delNode(int value) {
if (root == null) {
return;
} else {
Node node = searchNode(value);
Node parent = searchParent(value);
//如果找不到要删除的结点,退出方法
if (node == null) {
return;
}
//只有一个结点,该结点为根结点,则该结点一定会被删除
if (root.left == null && root.right == null) {
root = null;
return;
}
//如果要删除的结点为叶子结点
if (node.left == null && node.right == null) {
//判断叶子结点为左子结点还是右子结点
if (parent.left != null && parent.left.value == value) {
parent.left = null;
return;
} else if (parent.right != null && parent.right.value == value) {
parent.right = null;
return;
}
} else if (node.left != null && node.right != null) {
// 要删除的结点有两颗子树
// 找到要删除结点右子树的最小结点
node.value = delRightMin(node.right);
} else {
// 要删除的结点有一颗子树
if (root.value == value) {
// 当删除结点为根结点
if (root.left != null) {
root = root.left;
} else {
root = root.right;
}
} else if (parent.left == node) {
// 删除结点为左子结点
if (node.left != null) {
// 删除的结点有左子树
parent.left = node.left;
} else {
// 删除的结点有右子树
parent.left = node.right;
}
} else {
// 删除的结点为右子结点
if (node.left != null) {
parent.right = node.left;
} else {
parent.right = node.right;
}
}
}
}
}
// 添加结点
public void add(Node node) {
if (root == null) {
root = node;
} else {
root.add(node);
}
}
// 中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
//结点类
class Node {
public int value;
public Node left;
public Node right;
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
// 平衡二叉树左旋方法
public void leftRotate() {
// 创建新的结点,值为根结点
Node newNode = new Node(this.value);
// 将根结点的左子树设为新结点的左子树
newNode.left = this.left;
// 将根结点右子树的左子树设为新结点的右子树
newNode.right = this.right.left;
// 将根结点的值设为根结点的右子树
this.value = this.right.value;
// 将根结点的右子树设为右子树的右子树
this.right = this.right.right;
// 将根结点的左子树设为新结点
this.left = newNode;
}
// 平衡二叉树右旋方法
public void rightRotate() {
// 创建新的结点,值为根结点
Node newNode = new Node(this.value);
// 将根结点的右子树设为新结点的右子树
newNode.right = this.right;
// 将根结点左子树的右子树设为新结点的左子树
newNode.left = this.left.right;
// 将根结点的值设为根结点的左子树
this.value = this.left.value;
// 将根结点的左子树设为左子树的左子树
this.left = this.left.left;
// 将根结点的右子树设为新结点
this.right = newNode;
}
// 返回左子树的高度
public int leftHeight() {
if (this.left == null) {
return 0;
} else {
return this.left.height();
}
}
// 返回右子树的高度
public int rightHeight() {
if (this.right == null) {
return 0;
} else {
return this.right.height();
}
}
// 返回当前结点的高度
public int height() {
return Math.max(this.left == null ? 0 : this.left.height(), this.right == null ? 0 : this.right.height()) + 1;
}
//查找结点,返回值为该结点,如果找不到,返回null
public Node searchNode(int value) {
if (value == this.value) {
return this;
} else if (value < this.value) {
if (this.left == null) {
return null;
}
return this.left.searchNode(value);
} else {
if (this.right == null) {
return null;
}
return this.right.searchNode(value);
}
}
//查找要删除结点的父结点
public Node searchParent(int value) {
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
return this;
} else {
if (this.left != null && value < this.value) {
return this.left.searchParent(value);
} else if (this.right != null && value >= this.value) {
return this.right.searchParent(value);
} else {
return null;
}
}
}
// 添加结点
public void add(Node node) {
if (node == null) {
return;
}
if (node.value < this.value) {
// 如果左子结点为空,则直接放在左子结点的位置上
if (this.left == null) {
this.left = node;
} else {
// 左子结点不为空时,进行递归
this.left.add(node);
}
} else {
if (this.right == null) {
this.right = node;
} else {
this.right.add(node);
}
}
// 添加结点之后,如果右子树的高度 - 左子树的高度 > 1
if (this.rightHeight() - this.leftHeight() > 1) {
// 如果当前结点的右子树的左子树的高度大于右子树的右子树,右子树进行右旋
if (this.right != null && this.right.leftHeight() > this.right.rightHeight()) {
this.right.rightRotate();
// 当前结点进行左旋
this.leftRotate();
} else {
this.leftRotate();
}
}
// 添加结点之后,如果左子树的高度 - 右子树的高度 > 1
if (this.leftHeight() - this.rightHeight() > 1) {
// 如果当前结点的左子树的右子树的高度大于左子树的左子树,左子树进行左旋
if (this.left != null && this.left.rightHeight() > this.left.leftHeight()) {
this.left.leftRotate();
// 当前结点进行右旋
this.rightRotate();
} else {
this.rightRotate();
}
}
}
// 中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
平衡二叉树为:
Node{value=2}
Node{value=4}
Node{value=6}
Node{value=10}
Node{value=11}
Node{value=17}
Node{value=22}
Node{value=25}
Node{value=35}
左子树高度为:2
右子树高度为:3