目录
一、光的描述
1.1光波基本知识
1、光波周期T:光振动一次所需要的时间(正弦波传播一个波长所需要时间T=λ波长/u光速=1/T振动频率)
2、光在不同的传播媒质中传播时,其频率不变,即频率与媒质无关;任何单色光在真空中的速度u=C≈3*10^8m/s,但在媒质中传播的光速和波长会发生变化;
1.2光波的振动波动方程
1.2.1描述波的物理量
(1)振幅A:是媒质质元振动时离开平衡位置的最大位移,反映振动及波动的强弱程度,振幅恒为正,单位是米;
(2)角频率ω(角速度rad/s):角频率w也成圆频率,表征振动的快慢程度及其周期性,单位赫兹;(描述单位时间内角度变化率)可以从转动角度描述其频率,也可以从振动角度描述。
(3)频率f:频率f是媒质质元单位时间完成的振动的次数,也表示单位时间内传播的波长数,单位赫兹;
(4)周期T:周期是媒质质元完成一次完整的振动所需时间,也表示波动传播一个波长所需要的时间,单位是秒
(5)角频率、频率与周期三者的关系:ω=2πf=2π/T;
(6)相位:描述振动物体所处运动状态的物理量,振动相位用(wt+φ)表示,其中φ,是t=0时刻的相位,称为初相位;
(7)波长λ:振动状态相同的相邻两点(或相位相差2π的两点)之间的距离,单位是米,反映了波在空间上的周期性;
(8)波速u:某一振动状态(相位)在单位时间内所传播的距离,波速的单位是米/秒;
(9)波速与波长和周期(频率)的关系:
补充:波速与媒质质元的振动速度的区别:
波速是波的相位传播的速度,是定值;媒质质元的振动速度是其相对于平衡位置的移动速度,是变量
1.2.2 光波的振动、波形、波动方程
用于自学,内容参考:光学基础知识汇总(一)----物理光学入门大盘点1 - 知乎
(1)o点振动方程:A为振幅,w为角频率,φ为相位,即o点振动方程是y(t)函数,即振幅随时间的变化规律。
(2)X点的振动方程:即x=X时的振动方程,还是y(t)函数
某点处位移随时间变化
(3)波形方程,某一时刻t=t1时的波形为:
时间固定情况下,各点处振动波形一定
(4)波动方程:为y=(t,x)的函数:
波动方程为时间、位移函数。
1.2.3 振动、波形、波动方程区别
总结一下三者的区别和含义:
(1)振动方程y是时间t的函数,
(2)波动方程y是时间t和位置x的函数,
(3)如果给波动方程x一个确定的值(x=x1),则y只是时间的函数,此时波动方程得出的是x1位置处媒质质元的振动方程;
(4)如果给t一个确定的数值(t=t1),则y将只是x的函数,此时波动方程得出的是t=t1时刻的波形方程。
(5)当t和x都变化时,波动方程表示在波的传播方向上所有质元在各个时刻的y值。
1.3相干光学方面:
1.3.1 什么是光程?
如果媒质的折射率为n,传播物理路程为r,则光程nr:
光在媒质中实际经过的波程r与媒质的折射率n的乘积叫做光程,它是光在媒质中经过的路程转化成相当的在真空中的路程。
1.3.2 光的相干性及相干条件
满足以下三个条件的波源称为相干波源:
(1)两列波的频率相同;f频率=1/T周期=λ波长/u光速;波的振幅可能不相同;振幅、相位、频率
(2)振动方向相同;
(3)相位差恒定;光的相位可能会受环境、介质各种因素影响,导致相位发生缓慢变化。
当两列相干波在空间相遇,相遇区域内的各点有固定的相位差,有些点振动加强,有些点振动减弱,将在空间形成明暗相间的稳定的相干条纹。
光的相干性:空间相干性和时间相干性分别描述了在不同空间位置和不同时刻观察到的光场之间的相关性。https://www.zhihu.com/question/24382081/answer/3523344313?utm_psn=1892655889816741234
1)时间相干性
时间相干性 表示光束内光波相位随时间保持相关或相干的程度。它定义了光场波动的规律性和可预测性。
2)空间相干性
1.3.3 相干实现的方法?
将同一光束分成两束从而获得相干光的方法有两种:
(1)分波阵面法:从同一波面分出两列子波,经不同路径后相遇而发生干涉,例如杨氏双缝干涉就是采用这种方法获得的相干光;
(2)分振幅法:同一束光波在薄膜的两个表面分别反射,两束振幅稍有不同的反射光经不同路径相遇后发生干涉,如劈尖干涉、牛顿环干涉。
1.3.4相干的推导:
振幅叠加结果:
强度叠加结果:
波的强度正比与振幅的平方。
1.3.5 半波损失
经过反射之后相位变化π
理解以下几点:
(1)在波动光学中,折射率较大的媒质称为光密媒质,折射率较小的媒质称为光疏媒质;
(2)当光垂直入射到两种媒质的分界面上时,反射光是否出现半波损失,需通过比较两种媒质的折折率大小而定:
a 如果光波是从光疏媒质入射到光密媒质而发生反射,则反射光有半波损失;
b 如果光波是从光密媒质入射到光疏媒质而发生反射,则反射光无半波损失;
c 遇到有半波损失的情况时,反射光的光程应该加(或减)λ/2 ;
(3)半波损失只发生在反射光中,折射光中没有半波损失;
(4)两次半波损失相当于没有半波损失;
所以,大家在进行相干计算时,就要考虑光路中是否有半波损失。
1.3.6经典相干理案例
(1)杨氏双缝干涉
(2)劈尖干涉
(3)牛顿环
(4)迈克尔逊干涉仪
关注点,只需要记住应用结论:
当平面反射镜M1平移λ/2,在视场中就有一条明纹移过,若在视场中有N条明纹移过,则平面反射镜M1平移的距离为Nλ/2。
1.4光的衍射(不清晰,需要进一步理解)
光在传播过程中能够绕过障碍物的边缘而偏离直线传播的现象。如图15,不同的狭缝宽度衍射的差异性,一般狭缝与波长差不多时,衍射现象比较明显。
为什么会衍射:衍射之所以会形成明暗条纹, 根本的原因是在缝隙处,形成了次生波面。 而缝隙处的每一点,可以看成是产生次生波面的点光源。所以,衍射条纹实际上就是次生波干涉而形成的干涉条纹,这个就叫做惠更斯-菲涅尔原理。
光经过狭缝,狭缝成为新的光源
(1)单缝(夫琅禾费)衍射装置
经过狭缝,光有直接平行射出,也有成为新的光源沿各个方向传播,平行射出部分与沿各方向传播部分发生干涉。
(2)用“菲涅尔半波带法”解释光的衍射
前面学习的光的干涉是从同一点发出的光分成两束再相遇后干涉,而光的衍射是从一点发出的光分成多个光束,每个相邻的光束相位差相差半个波长,再相遇后干涉,干涉中不一定有衍射,但衍射中一定有干涉;
菲涅尔把光束按半个波长为一束光对光束进行划分,相邻的两束光相差半个波长,相位差为π,相邻的两束光叠加减弱为0,这样奇数个半波带相互抵消之后对应的就是明纹,偶数个半波带对应的就是暗纹。
(3)明暗条纹形成的讨论:
1.5、偏振光与马吕思定律
1.5.1 自然光与偏振光
(1)自然光:光矢量沿各个方向的概率均等,没有哪个方向较其他方向更占优势,这种光称为自然光;
(2)偏振光:如果在一束光中,它只有某一固定方向光振动,将这种光称为偏振光或或线偏振光完全偏振光(部分偏振光是指某一方向光振动比另一方向光振动更占优势)。
(3)任何一个光矢量都可以分解成相互垂直的两个方向的分矢量,且二者光强度均为自然光光强的一半。(得出偏振片透射出的偏振光光强为自然光光强的一半)(偏振片:只让某一特定方向振动的光通过)
1.5.2 布儒斯特定律与布儒斯特角:
布儒斯特定律自然光以入射角i入射到折射率分别为n1和n2的两种媒质的分界面上,产生反射和折射,反射光和折射光都是部分偏振光,在反射光中,垂直于入射面的光振动占优,在折射光中,入射面内的光振动占优,偏振化程度与光的入射角i有关。
当入射角i满足:
反射光为完全偏振光,此时反射光与折射光垂直,i0称为布儒斯特角。
1.5.3 马吕斯定律
一束光强为I0的完全偏振光入射到一偏振片上,若入射光的光振动方向与偏振片的偏振化方向夹角为α,则出射的光强度为:
https://zhuanlan.zhihu.com/p/47622878
二、光的电磁理论基础
相干性(Coherence)从字面意思上来理解的话就是两束光发生干涉的程度。
剪切散斑干涉:
由激光器发出的激光经过扩束后打在被测物体上,产生的散斑进入方棱镜。产生了透射和反射,分别到达M1和M2两个反射镜,由于M2有一定的偏折角,所以在摄像头上将会产生两个剪切的像。这两个像是由激光形成的,它们将在摄像头平面上互相干涉而形成散斑干涉图像。当两个变形前后的散斑图像同时记录在摄像头上,经过处理后,将出现一个表示物体位移偏导数的条纹图案。
在剪切散斑干涉中,采用CCD进行记录并直接输入计算机。用变形前后两幅散斑图像相减,这种相减的方式把本底光强或者背景光强去除,而突出了由于变形引起的相位变化△φ的结果。 可以看出在计算机屏幕上将出现明暗相间的散斑干涉条纹。可以想象,当,N=0,±1,±2……时,出现亮条纹。当 ,n=0,±1,±2……时,出现暗条纹。因此,我们可以很直接的获得表示物体位移导数的条纹图。
2.1 基本理论
麦克斯韦(Maxwell)总结推广了稳定电磁场和似稳电磁场的基本规律,提出时变场情况下的电磁场传播规律,归结为麦克斯韦方程组,它有积分和微分两种形式,在实际应用中通常用微分形式来求解电磁场中某一给定点的场量.表示如下
三、波动光学
3.1复振幅
3.1.1复振幅的物理意义
复振幅 E(r) 本身并不是一个可以直接观测的物理量,但它的模的平方 ∣E(r)∣2 对应于光强,是可测量的。复振幅的相位 ϕ(r) 在光的干涉和衍射现象中起着关键作用,但对光强没有直接影响。
3.1.2复振幅在波动光学中的应用
复振幅的引入使得波动光学中的许多问题可以使用复数分析的方法来解决。例如,光的传播可以通过复振幅的相位变化来描述,光的干涉可以通过复振幅的相加来计算,光的衍射可以通过复振幅的傅里叶变换来分析。
-
光的干涉:通过复振幅的相位变化,可以分析光的干涉现象。
-
光的衍射:通过复振幅的傅里叶变换,可以分析光的衍射现象。
-
光的传播:通过复振幅的传播方程,可以计算光在自由空间或介质中的传播。
3.1.3复振幅推导
-
A(x,y,z) 是光的振幅分布。
-
ϕ(x,y,z) 是光的相位分布。
-
i 是虚数单位:虚数单位 i 使得复振幅可以表示为一个旋转相位的复数。在复平面上,复振幅 E(r) 可以表示为一个向量,其模长为 A(r),与实轴的夹角为 ϕ(r)。当 ϕ(r) 变化时,这个向量在复平面上旋转,从而描述了光波的相位变化。
-
光强 I(x,y,z) 是复振幅的模的平方,即: I(x,y,z)=∣E(x,y,z)∣2=A(x,y,z)2
-
3.2复振幅表示光的叠加
1)两束光的复振幅
假设两束光的复振幅分别为 E1(r) 和 E2(r),可以表示为: E1(r)=A1(r)exp(iϕ1(r)) E2(r)=A2(r)exp(iϕ2(r)) 其中:
-
A1(r) 和 A2(r) 分别是两束光的振幅分布。
-
ϕ1(r) 和 ϕ2(r) 分别是两束光的相位分布。
2)光强叠加
两束光叠加后的复振幅为: E(r)=E1(r)+E2(r)
3)光强分布的计算
两束光叠加后的光强分布 I(r) 是叠加后的复振幅的模的平方,即: I(r)=∣E(r)∣2=∣E1(r)+E2(r)∣2
4)展开光强分布
利用复数的模的平方的性质,可以将光强分布展开为: I(r)=(E1(r)+E2(r))(E1∗(r)+E2∗(r)) 其中 E1∗(r) 和 E2∗(r) 分别是 E1(r) 和 E2(r) 的复共轭。
ps:两个实部相等,虚部互为相反数的复数互为共轭复数
展开得到: I(r)=∣E1(r)∣2+∣E2(r)∣2+E1(r)E2∗(r)+E1∗(r)E2(r)
5)干涉项
项 E1(r)E2∗(r)+E1∗(r)E2(r) 是两束光的干涉项,可以表示为: E1(r)E2∗(r)+E1∗(r)E2(r)=2Re(E1(r)E2∗(r)) 其中 Re(z) 表示复数 z 的实部。
6)光强分布的最终表达式
因此,两束光叠加后的光强分布可以表示为: I(r)=I1(r)+I2(r)+2Re(E1(r)E2∗(r)) 其中 I1(r)=∣E1(r)∣2 和 I2(r)=∣E2(r)∣2 分别是两束光的光强分布。
3.3光强分布
激光出射出去为什么不同位置振幅、相位不同。光强=复振幅的平方,因此不同位置光强不同,中心位置光强最强(最亮)。