LSTM模型与前向反向传播算法

本文详细介绍了LSTM模型的结构,包括遗忘门、输入门、细胞状态更新和输出门,以及LSTM如何克服RNN的梯度消失问题。此外,文章还概述了LSTM的前向传播和反向传播算法,帮助读者理解其工作原理。
摘要由CSDN通过智能技术生成

循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。

1. 从RNN到LSTM

在RNN模型里,我们讲到了RNN具有如下的结构,每个序列索引位置t都有一个隐藏状态h(t)
在这里插入图片描述
如果我们略去每层都有的o(t),L(t),y(t),则RNN的模型可以简化成如下图的形式:
在这里插入图片描述
图中可以很清晰看出在隐藏状态h(t)由x(t)和h(t−1)得到。得到h(t)后一方面用于当前层的模型损失计算,另一方面用于计算下一层的h(t+1)

由于RNN梯度消失的问题,大牛们对于序列索引位置t的隐藏结构做了改进,可以说通过一些技巧让隐藏结构复杂了起来,来避免梯度消失的问题,这样的特殊RNN就是我们的LSTM。由于LSTM有很多的变种,这里我们以最常见的LSTM为例讲述。LSTM的结构如下图:
在这里插入图片描述
可以看到LSTM的结构要比RNN的复杂的多,真佩服牛人们怎么想出来这样的结构,然后这样居然就可以解决RNN梯度消失的问题?由于LSTM怎么可以解决梯度消失是一个比较难讲的问题,这需要很深的数学功底,不过不用担心,我们拿来用就可以了,毕竟大多数程序员不是研究数学的,所以这里就不多说,重点回到LSTM的模型本身。

2. LSTM模型结构剖析

上面我们给出了LSTM的模型结构,下面我们就一点点的剖析LSTM模型在每个序列索引位置t时刻的内部结构。

从上图中可以看出,在每个序列索引位置t时刻向前传播的除了和RNN一样的隐藏状态h(t),还多了另一个隐藏状态,如图中上面的长横线。这个隐藏状态我们一般称为细胞状态(Cell State),记为C(t)。如下图所示:
在这里插入图片描述
除了细胞状态,LSTM图中还有了很多奇怪的结构,这些结构一般称之为门控结构(Gate)。LSTM在在每个序列索引位置t的门一般包括遗忘门,输入门和输出门三种。下面我们就来研究上图中LSTM的遗忘门,输入门和输出门以及细胞状态。

2.1 LSTM之遗忘门

遗忘门(forget gate)顾名思义,是控制是否遗忘的,在LSTM中即以一定的概率控制是否遗忘上一层的隐藏细胞状态。遗忘门子结构如下图所示:
在这里插入图片描述
图中输入的有上一序列的隐藏状态h(t−1)和本序列数据x(t),通过一个激活函数,一般是sigmoid,得到遗忘门的输出f(t)。由于sigmoid的输出f(t)在[0,1]之间,因此这里的输出f(t)代表了遗忘上一层隐藏细胞状态的概率。用数学表达式即为:
f ( t ) = σ ( W f h ( t − 1 ) + U f x ( t ) + b f ) \begin{aligned} f^{(t)}=\sigma(W_{f}h^{(t-1)}+U_{f}x^{(t)}+b_{f}) \end{aligned} f(t)=σ(Wfh(t1)+Ufx(t)+bf)
其中 W f W_{f} Wf, U f U_{f} Uf, b f b_{f} bf为线性关系的系数和偏倚,和RNN中的类似。 σ \sigma σ为sigmoid激活函数。

2.2 LSTM之输入门

输入门(input gate)负责处理当前序列位置的输入,它的子结构如下图:
在这里插入图片描述
从图中可以看到输入门由两部分组成,第一部分使用了sigmoid激活函数,输出为i(t),第二部分使用了tanh激活函数,输出为a(t), 两者的结果后面会相乘再去更新细胞状态。用数学表达式即为:
i ( t ) = σ ( W i h ( t − 1 ) + U i x ( t ) + b i ) a ( t ) = t a n h ( W a h ( t − 1 ) + U a x ( t ) + b a ) \begin{aligned} i^{(t)}&=\sigma(W_{i}h^{(t-1)}+U_{i}x^{(t)}+b_{i})\\ a^{(t)}&=tanh(W_{a}h^{(t-1)}+U_{a}x^{(t)}+b_{a}) \end{aligned} i(t)a(t)=σ(Wih(t1)+Uix(t)+bi)=tanh(Wah(t1)+Uax(t)+ba)
其中 W i W_{i} Wi, U i U_{i} Ui, b i b_{i} bi, W a W_{a} Wa, U a U_{a} Ua, b a b_{a} ba,为线性关系的系数和偏倚,和RNN中的类似。σ为sigmoid激活函数。

2.3 LSTM之细胞状态更新

在研究LSTM输出门之前,我们要先看看LSTM之细胞状态。前面的遗忘门和输入门的结果都会作用于细胞状态C(t)。我们来看看从细胞状态C(t−1)如何得到C(t)。如下图所示:
在这里插入图片描述
细胞状态C(t)由两部分组成,第一部分是C(t−1)和遗忘门输出f(t)的乘积,第二部分是输入门的i(t)和a(t)的乘积,即:
C ( t ) = C ( t − 1 ) ⨀ f ( t ) + i ( t ) ⨀ a ( t ) \begin{aligned} C^{(t)}=C^{(t-1)}\bigodot f^{(t)}+i^{(t)}\bigodot a^{(t)} \end{aligned} C(t)=C(t1)f(t)+i(t)a(t)
其中, ⨀ \bigodot 为Hadamard积,在DNN中也用到过。

2.4 LSTM之输出门

有了新的隐藏细胞状态C(t),我们就可以来看输出门了,子结构如下:
在这里插入图片描述
从图中可以看出,隐藏状态h(t)的更新由两部分组成,第一部分是o(t), 它由上一序列的隐藏状态h(t−1)和本序列数据x(t),以及激活函数sigmoid得到,第二部分由隐藏状态C(t)和tanh激活函数组成, 即:
o ( t ) = σ ( W o h ( t − 1 ) + U o x ( t ) + b o ) h ( t ) = o ( t ) ⨀ t a n h ( C ( t ) ) \begin{aligned} o^{(t)}&=\sigma(W_{o}h^{(t-1)}+U_{o}x^{(t)}+b_{o})\\ h^{(t)}&=o^{(t)}\bigodot tanh(C^{(t)}) \end{aligned} o(t)h(t)=σ(Woh(t1)+Uox(t)+bo)=o(t)tanh(C(t))
通过本节的剖析,相信大家对于LSTM的模型结构已经有了解了。当然,有些LSTM的结构和上面的LSTM图稍有不同,但是原理是完全一样的。

3. LSTM前向传播算法

现在我们来总结下LSTM前向传播算法。LSTM模型有两个隐藏状态h(t),C(t),模型参数几乎是RNN的4倍,因为现在多了 W f W_{f} Wf, U f U_{f} Uf, b f b_{f} bf, W a W_{a} Wa, U a U_{a} Ua, b a b_{a} ba, W i W_{i} Wi, U i U_{i}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值