🏡作者主页:点击!
🤖编程探索专栏:点击!
⏰️创作时间:2024年11月25日10点53分
神秘男子影,
秘而不宣藏。
泣意深不见,
男子自持重,
子夜独自沉。
引言与背景
近年来,目标检测技术在生物医学影像领域取得了显著进展,尤其是在精确定位和识别病变方面,如癌细胞和肺结节。
尽管如此,现有方法在检测微小生物医学实体(如小于3毫米的异常细胞和肺结节)方面仍存在精度不足的问题。
CAFBlock的引入:
- 在YOLOv8架构中引入了一个新的组件,称为CAFBlock,它由ACFM和MSNN组成,每个CAFBlock都策略性地放置在YOLOv8主干网络之后,以增强全局和局部特征的建模。
3.2 Attention and Convolution Fusion Module (ACFM)
设计动机:
- 考虑到卷积操作的局部感受野限制,有效地捕获全局特征可能面临挑战。相反,Transformers擅长提取全局特征和处理长距离依赖关系,这得益于它们的注意力机制。通过融合卷积和注意力机制,可以巧妙地建模全局和局部特征。
ACFM的结构:
- ACFM包括全局分支和局部分支。全局分支引入了自注意力机制以增强长距离信息交互,而局部分支通过通道洗牌增强模型复杂性,从而增强表示能力和减少过拟合的风险。
- 在全局分支中,通过1×1卷积和3×3深度卷积操作生成查询(Q)、键(K)和值(V)张量。然后,通过softmax归一化计算注意力图,从而减少计算负担。
- 在局部分支中,首先使用1×1卷积调整通道维度,然后通过通道洗牌操作和深度可分离卷积来增强特征的交互和整合。
3.3 Multi-Scale Neural Network (MSNN)
设计动机:
- 认识到Vision Transformer架构中FFN的单尺度特征聚合的局限性,作者引入了MSNN来增强非线性变换。
MSNN的结构:
- MSNN通过两个并行路径处理输入特征。在较低路径中,使用3×3深度卷积进行特征提取,并引入ReLU激活函数引入非线性特性。
- 在上路径中,为了增强感受野并提取更广泛的特征,使用两个具有不同扩张率的3×3扩张卷积层。然后,通过元素-wise乘积操作引入门控机制,增强非线性变换。
- 最后,使用1×1卷积核调整最终输出的维度。
实验与分析
数据集
BCCD 数据集:
BCCD(Blood Cell Count and Detection)数据集是一个全面的、轻量级的图像集合,包含12,500张真实的高分辨率显微镜下的血液样本图像。
数据集提供了多种类型的血细胞图像,包括正常和异常的血细胞,捕获了各种形状、大小和染色特征。
图像代表了四种主要类型的血细胞:红细胞(RBCs)、白细胞(WBCs)、血小板,以及这些细胞的组合,覆盖了不同的视野和细胞密度。
LUNA16 数据集:
LUNA16 是目前肺部结节检测中最具代表性和权威性的高质量肺结节CT图像数据集。
数据集包含888个3D肺部CT图像,1186个肺结节,以及36378个由4名专业放射科医生注释的信息。数据集由四部分组成:原始CT图像、肺结节位置注释文件、原始CT肺部区域分割文件和诊断结果文件。
论文中按照7:2:1的比例划分训练集、测试集和验证集。
对比实验
在BCCD数据集上的比较:
- 将CAF-YOLO与BCCD数据集上的最先进目标检测方法进行比较,结果表明CAF-YOLO在所有评估指标上都优于列出的纯目标检测方法。
- 例如,CAF-YOLO在mAP@50、mAP@50-95和精确度上分别比ADA-YOLO高出1%、1.1%和2.7%,在召回率上比YOLOv5高出0.6%。
在LUNA16数据集上的比较:
- 为了评估CAF-YOLO在医学图像目标检测中的泛化能力,将其与LUNA16数据集上的最先进基于CNN的目标检测方法进行比较,结果表明CAF-YOLO在mAP@50和精确度上分别比YOLOv9高出1.7%和2.9%。
消融实验
作者在BCCD数据集上进行了消融实验,比较了不同配置下的性能,包括mAP@50、mAP@50-95、召回率和精确度等指标。
实验结果
下表展示了在BCCD数据集上逐步引入新提出的组件对模型性能的影响。以下是各个配置的详细分析:
分析
- ACFM的有效性:通过比较ID:1(基线模型)和ID:2(加入ACFM的模型),发现mAP@50得分从0.888提高到0.913,表明ACFM能显著提升模型性能,有效捕获全局和局部特征。
- MSNN的影响:通过比较ID:1和ID:3,发现mAP@50得分从0.888提高到0.899,表明MSNN通过提取多尺度特征改善了特征聚合,从而提高了模型性能。
- 全局分支和局部分支的影响:通过比较ID:1、ID:3与ID:4、ID:5,发现加入全局分支和局部分支后,mAP@50得分分别提高到0.901和0.902,表明全局分支能捕获更丰富的全局特征,而局部分支通过通道洗牌增强了模型的表示能力和泛化能力。
可视化
下图展示了CAF-YOLO与基线模型在BCCD数据集上的图像检测结果与真实标注的比较。
结果显示,CAF-YOLO在处理医学图像中的目标遮挡和截断问题时表现出色,能够成功检测不同大小的红细胞,包括微小的血小板,实现了全面的覆盖。
与基线模型相比,CAF-YOLO在检测所有类别的正例方面取得了更好的性能,这表明CAF-YOLO在医学目标检测中检测更广泛正例的能力。
结论
消融实验结果表明,CAF-YOLO中的ACFM和MSNN组件对于提高模型性能至关重要。ACFM通过结合注意力机制和卷积操作,有效地捕获了全局和局部特征,而MSNN通过多尺度特征提取增强了特征聚合。
总结
在生物医学图像分析中,目标检测扮演着至关重要的角色,尤其是在病变识别方面。尽管当前方法在识别和定位病变方面表现出色,但它们往往在检测微小的生物医学实体时显得力不从心,例如血液和肺病理学中至关重要的异常细胞和小于3毫米的肺结节。
为了解决这一不足,作者基于YOLOv8架构开发了CAF-YOLO方法。这种方法既敏捷又稳健,利用了卷积神经网络(CNNs)和变换器(transformers)的优势。为了克服卷积核固有的局限性,即难以处理长距离信息交互,作者引入了注意力与卷积融合模块(ACFM)。
该模块增强了全局和局部特征建模,使得能够捕捉长期特征依赖性和空间自相关性。此外,作者设计了一个多尺度神经网络(MSNN),以改善变换器架构中的前馈网络(FFN)中有限的单一尺度特征聚合问题。MSNN通过提取不同尺度的特征,增强了多尺度信息聚合。
在BCCD和LUNA16等广泛使用的数据集上的实验评估验证了CAF-YOLO背后的有效性和合理性。结果显示,CAF-YOLO在检测和精确定位生物医学图像中各种复杂微病变方面具有卓越的能力。这一进展对于改善医疗诊断和治疗策略具有重大潜力。
附件中训练和测试都已修改为可以一键运行,同时附上数据集和我们训练好的模型。模型具体结构和参数请参见演示视频。
成功的路上没有捷径,只有不断的努力与坚持。如果你和我一样,坚信努力会带来回报,请关注我,点个赞,一起迎接更加美好的明天!你的支持是我继续前行的动力!"
"每一次创作都是一次学习的过程,文章中若有不足之处,还请大家多多包容。你的关注和点赞是对我最大的支持,也欢迎大家提出宝贵的意见和建议,让我不断进步。"
神秘泣男子