3种场景下的相关性计算方式,热力图优化展示

导语:相关系数衡量的是两个变量同时变化的程度和方向,比如身高和体重,体重一般随着身高增加而增加,在很多情况下,我们处理的对象都是连续变量与连续变量之间的关系,但是还有离散变量与离散变量,连续变量与离散变量,因此本文将对这个话题进行总结,同时介绍一种新颖的相关系数矩阵可视化方法

本文首发于个人公众号,私信骚扰

case1: 连续变量与连续变量

皮尔逊相关系数

皮尔逊相关系数(Pearson)反映的是两个连续变量之间的线性相关程度,其计算涉及两个统计量: 协方差标准差。协方差是用于衡量两个随机变量之间线性关系的指标, 其定义如下:
C o v ( x , y ) = ∑ i = 1 n ( x i − μ x ) ( y i − μ y ) n − 1 \begin{aligned} Cov(x, y) = \frac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y) }{n-1} \end{aligned} Cov(x,y)=n1i=1n(xiμx)(yiμy)
其中 μ x \mu_x μx μ y \mu_y μy分别表示随机变量 x x x y y y的均值;
当协方差大于0,表示正相关, 反之,表示负样本, 但是上式也存在问题, 当数据中存在异常点或者数据的分散程度发生变化时,会影响协方差的取值,因此为了更好地刻画数据的分散程度,以及对数据进行标准化,同时引入协方差和标准差来定义相关性,即皮尔逊相关系数,其定义如下:
ρ x y = c o r r ( x , y ) = C o v ( x , y ) δ x δ y δ x = ∑ i = 1 n ( x i − μ x ) 2 n − 1 δ y = ∑ i = 1 n ( y i − μ y ) 2 n − 1 \begin{aligned} \rho_{xy} &= corr(x, y) = \frac{Cov(x, y)}{\delta x \delta y} \\ \delta x &= \sqrt{\frac{\sum_{i=1}^n (x_i - \mu_x)^2}{n-1}} \\ \delta y &= \sqrt{\frac{\sum_{i=1}^n (y_i - \mu_y)^2}{n-1}} \end{aligned} ρxyδxδy=corr(x,y)=δxδyCov(x,y)=n1

  • 0
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值