机器学习 | 特征工程综述

特征工程在机器学习中占据核心地位,涉及数据预处理、特征选择、特征组合及降维等多个环节。数据预处理包括数据清洗(如缺失值、异常值处理)、归一化、编码等;特征选择关注特征发散和相关性,常用方法有方差选择、Filter、L1正则项和树模型;特征组合通过多项式、GBDT等方式增强模型复杂度;特征降维如PCA、LDA用于减少计算量并保持关键信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。

构建一个算法模型需要几个步骤,包括数据准备、特征工程、模型构建、模型调优等,其中特征工程是最重要的步骤,需要 70% 甚至以上的工作量。特征工程主要包括数据预处理、特征选择、特征构造、特征降维等。

通过总结和归纳的特征工程包括以下方面:

 

二、数据预处理

数据预处理是特征工程的最重要的起始步骤,主要包括数据清洗、特征归一化、特征编码、特征离散化等。

2.1 数据清洗

数据清洗是数据预处理阶段的主要组成部分,主要包括缺失值处理、异常值处理、样本不平衡处理等。

2.1.1 缺失值处理

一般来说,未经处理的原始数据中通常会存在缺失值,因此在建模训练之前需要处理好缺失值。

1)缺失数据占比小于 20%。可以通过直接填充法,连续特征一般取均值填充&#

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值