min-max 容斥
我觉得发明这东西的人一定很无聊。
首先,我们现在有一个集合 S S S 。
设 S m a x Smax Smax 表示集合 S S S 的最大值, S m i n Smin Smin 表示集合 S S S 的最小值。
那么,如果我们不够聪明,只会求 S m i n Smin Smin,不会求 S m a x Smax Smax ,那么,我们该怎么求 S m a x Smax Smax 呢?
min-max容斥的结论:
S m a x = ∑ T ⊆ S T m i n ⋅ ( − 1 ) ∣ T ∣ + 1 \begin{aligned} Smax &= \sum _ {T \subseteq S} Tmin·(-1)^{|T|+1}\end{aligned} Smax=T⊆S∑Tmin⋅(−1)∣T∣+1
S m i n = ∑ T ⊆ S T m a x ⋅ ( − 1 ) ∣ T ∣ + 1 \begin{aligned} Smin &= \sum _ {T \subseteq S} Tmax·(-1)^{|T|+1}\end{aligned} Smin=T⊆S∑Tmax⋅(−1)∣T∣+1
那么如何证明呢?其实不难发现,证明了两个式子中的一个,另一个也就证明了。
证明第一个式子:
不难发现, S m a x Smax Smax 的值只在 ∣ T ∣ = 1 |T|=1 ∣T∣=1 且选取的元素正好等于 S m a x Smax Smax 的情况下选取了一次,因为如果选择了其他元素, S m a x Smax Smax 不可能是最小值。其他第 k k k 小的数,选择比它大的 n − k n-k n−k 个数的子集,这个东西有 2 n − k 2^{n-k} 2n−k 种情况,其中 2 n − k − 1 2^{n-k-1} 2n−k−1 种 ∣ T ∣ |T| ∣T∣ 是奇数, 2 n − k − 1 2^{n-k-1} 2n−k−1 种 ∣ T ∣ |T| ∣T∣ 是偶数,互相抵消。
模板题:
[HAOI2015] 按位或
思路:先跑高维前缀和(快速莫比乌斯变换也一样),再跑min-max容斥。
代码:
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll mod = 1e9 + 7;
const int N = 200005;
const int INF = 0x3f3f3f3f;
double a[1 << 20];
int main() {
int n;
scanf("%d", &n);
int m = 1 << n;
for (int i = 0; i < m; i++) scanf("%lf", &a[i]);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (j >> i & 1) a[j] += a[j ^ 1 << i];
}
}
double ans = 0;
for (int i = 1; i < m; i++) {
if (1 - a[i ^ (m - 1)] < 1e-10) return puts("INF"), 0;
double now = 1 / (1 - a[i ^ (m - 1)]);
if (__builtin_popcount(i) & 1)
ans += now;
else
ans -= now;
}
printf("%.10lf\n", ans);
return 0;
}