min-max 容斥

min-max 容斥

我觉得发明这东西的人一定很无聊。

首先,我们现在有一个集合 S S S

S m a x Smax Smax 表示集合 S S S 的最大值, S m i n Smin Smin 表示集合 S S S 的最小值。

那么,如果我们不够聪明,只会求 S m i n Smin Smin,不会求 S m a x Smax Smax ,那么,我们该怎么求 S m a x Smax Smax 呢?

min-max容斥的结论:

S m a x = ∑ T ⊆ S T m i n ⋅ ( − 1 ) ∣ T ∣ + 1 \begin{aligned} Smax &= \sum _ {T \subseteq S} Tmin·(-1)^{|T|+1}\end{aligned} Smax=TSTmin(1)T+1

S m i n = ∑ T ⊆ S T m a x ⋅ ( − 1 ) ∣ T ∣ + 1 \begin{aligned} Smin &= \sum _ {T \subseteq S} Tmax·(-1)^{|T|+1}\end{aligned} Smin=TSTmax(1)T+1

那么如何证明呢?其实不难发现,证明了两个式子中的一个,另一个也就证明了。

证明第一个式子:

不难发现, S m a x Smax Smax 的值只在 ∣ T ∣ = 1 |T|=1 T=1 且选取的元素正好等于 S m a x Smax Smax 的情况下选取了一次,因为如果选择了其他元素, S m a x Smax Smax 不可能是最小值。其他第 k k k 小的数,选择比它大的 n − k n-k nk 个数的子集,这个东西有 2 n − k 2^{n-k} 2nk 种情况,其中 2 n − k − 1 2^{n-k-1} 2nk1 ∣ T ∣ |T| T 是奇数, 2 n − k − 1 2^{n-k-1} 2nk1 ∣ T ∣ |T| T 是偶数,互相抵消。

模板题:
[HAOI2015] 按位或

思路:先跑高维前缀和(快速莫比乌斯变换也一样),再跑min-max容斥。

代码:

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll mod = 1e9 + 7;
const int N = 200005;
const int INF = 0x3f3f3f3f;
double a[1 << 20];
int main() {
    int n;
    scanf("%d", &n);
    int m = 1 << n;
    for (int i = 0; i < m; i++) scanf("%lf", &a[i]);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (j >> i & 1) a[j] += a[j ^ 1 << i];
        }
    }
    double ans = 0;
    for (int i = 1; i < m; i++) {
        if (1 - a[i ^ (m - 1)] < 1e-10) return puts("INF"), 0;
        double now = 1 / (1 - a[i ^ (m - 1)]);
        if (__builtin_popcount(i) & 1)
            ans += now;
        else
            ans -= now;
    }
    printf("%.10lf\n", ans);
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值