素数筛法
引入
如果我们想要知道小于等于 n n n 有多少个素数呢?
一个自然的想法是对于小于等于 n n n 的每个数进行一次质数检验。这种暴力的做法显然不能达到最优复杂度。
埃拉托斯特尼筛法
过程
考虑这样一件事情:对于任意一个大于 1 1 1 的正整数 n n n,那么它的 x x x 倍就是合数( x > 1 x > 1 x>1)。利用这个结论,我们可以避免很多次不必要的检测。
如果我们从小到大考虑每个数,然后同时把当前这个数的所有(比自己大的)倍数记为合数,那么运行结束的时候没有被标记的数就是素数了。
实现
vector<int> prime;
bool is_prime[N];
void Eratosthenes(int n) {
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; ++i) is_prime[i] = true;
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
prime.push_back(i);
if ((long long)i * i > n) continue;
for (int j = i * i; j <= n; j += i)
// 因为从 2 到 i - 1 的倍数我们之前筛过了,这里直接从 i
// 的倍数开始,提高了运行速度
is_prime[j] = false; // 是 i 的倍数的均不是素数
}
}
}
以上为 Eratosthenes 筛法(埃拉托斯特尼筛法,简称埃氏筛法),时间复杂度是 O ( n log log n ) O(n\log\log n) O(nloglogn)。
现在我们就来看看推导过程:
如果每一次对数组的操作花费 1 个单位时间,则时间复杂度为:
O
(
∑
k
=
1
π
(
n
)
n
p
k
)
=
O
(
n
∑
k
=
1
π
(
n
)
1
p
k
)
O\left(\sum_{k=1}^{\pi(n)}{\frac{n}{p_k}}\right)=O\left(n\sum_{k=1}^{\pi(n)}{\frac{1}{p_k}}\right)
O
k=1∑π(n)pkn
=O
nk=1∑π(n)pk1
其中
p
k
p_k
pk 表示第
k
k
k 小的素数,
π
(
n
)
\pi(n)
π(n) 表示
≤
n
\le n
≤n 的素数个数。
∑
k
=
1
π
(
n
)
\sum_{k=1}^{\pi(n)}
∑k=1π(n) 表示第一层 for 循环,其中累加上界
π
(
n
)
\pi(n)
π(n) 为 if (prime[i])
进入 true 分支的次数;
n
p
k
\frac{n}{p_k}
pkn 表示第二层 for 循环的执行次数。
根据 Mertens 第二定理,存在常数 B 1 B_1 B1 使得:
∑ k = 1 π ( n ) 1 p k = log log n + B 1 + O ( 1 log n ) \sum_{k=1}^{\pi(n)}{\frac{1}{p_k}}=\log\log n+B_1+O\left(\frac{1}{\log n}\right) k=1∑π(n)pk1=loglogn+B1+O(logn1)
所以 Eratosthenes 筛法 的时间复杂度为 O ( n log log n ) O(n\log\log n) O(nloglogn)。接下来我们证明 Mertens 第二定理的弱化版本 ∑ k ≤ π ( n ) 1 / p k = O ( log log n ) \sum_{k\le\pi(n)}1/p_k=O(\log\log n) ∑k≤π(n)1/pk=O(loglogn):
根据 π ( n ) = Θ ( n / log n ) \pi(n)=\Theta(n/\log n) π(n)=Θ(n/logn),可知第 n n n 个素数的大小为 Θ ( n log n ) \Theta(n\log n) Θ(nlogn)。于是就有
∑ k = 1 π ( n ) 1 p k = O ( ∑ k = 2 π ( n ) 1 k log k ) = O ( ∫ 2 π ( n ) d x x log x ) = O ( log log π ( n ) ) = O ( log log n ) \begin{aligned} \sum_{k=1}^{\pi(n)}{\frac{1}{p_k}} &=O\left(\sum_{k=2}^{\pi(n)}{\frac{1}{k\log k}}\right) \\ &=O\left(\int_2^{\pi(n)}{\frac{\mathrm dx}{x\log x}}\right) \\ &=O(\log\log\pi(n))=O(\log\log n) \end{aligned} k=1∑π(n)pk1=O k=2∑π(n)klogk1 =O(∫2π(n)xlogxdx)=O(loglogπ(n))=O(loglogn)
当然,上面的做法效率仍然不够高效,应用下面几种方法可以稍微提高算法的执行效率。
筛至平方根
显然,要找到直到 n n n 为止的所有素数,仅对不超过 n \sqrt n n 的素数进行筛选就足够了。
vector<int> prime;
bool is_prime[N];
void Eratosthenes(int n) {
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; ++i) is_prime[i] = true;
// i * i <= n 说明 i <= sqrt(n)
for (int i = 2; i * i <= n; ++i) {
if (is_prime[i])
for (int j = i * i; j <= n; j += i) is_prime[j] = false;
}
for (int i = 2; i <= n; ++i)
if (is_prime[i]) prime.push_back(i);
}
这种优化不会影响渐进时间复杂度,实际上重复以上证明,我们将得到 n ln ln n + o ( n ) n \ln \ln \sqrt n + o(n) nlnlnn+o(n),根据对数的性质,它们的渐进相同,但操作次数会明显减少。
只筛奇数
因为除 2 以外的偶数都是合数,所以我们可以直接跳过它们,只用关心奇数就好。
首先,这样做能让我们内存需求减半;其次,所需的操作大约也减半。
减少内存的占用
我们注意到筛选时只需要 bool
类型的数组。bool
数组的一个元素一般占用
1
1
1 字节(即
8
8
8 比特),但是存储一个布尔值只需要
1
1
1 个比特就足够了。
我们可以使用 位运算 的相关知识,将每个布尔值压到一个比特位中,这样我们仅需使用 n n n 比特(即 n 8 \dfrac n 8 8n 字节)而非 n n n 字节,可以显著减少内存占用。
但是,这种称为 位级压缩 的方法会使这些位的操作复杂化。任何位上的读写操作都需要多次算术运算,最终会使算法变慢。因此,这种方法只有在 n n n 特别大,以至于我们不能再分配内存时才合理。在这种情况下,我们将牺牲效率,通过显著降低算法速度以节省内存(减小到原来的 n 8 \dfrac n 8 8n)。
值得一提的是,存在自动执行位级压缩的数据结构,如 C++ 中的 vector<bool>
和 bitset<>
(参见 bitset: 与埃氏筛结合)。
分块筛选
由优化「筛至平方根」可知,不需要一直保留整个 is_prime[1...n]
数组。为了进行筛选,只保留到
n
\sqrt n
n 的素数就足够了,即 prime[1...sqrt(n)]
。并将整个范围分成块,每个块分别进行筛选。这样,我们就不必同时在内存中保留多个块,而且 CPU 可以更好地处理缓存。
设 s s s 是一个常数,它决定了块的大小,那么我们就有了 ⌈ n s ⌉ \lceil {\frac n s} \rceil ⌈sn⌉ 个块,而块 k k k( k = 0 … ⌊ n s ⌋ k = 0 \dots \lfloor {\frac n s} \rfloor k=0…⌊sn⌋) 包含了区间 [ k s , k s + s − 1 ] [ks, ks + s - 1] [ks,ks+s−1] 中的数字。我们可以依次处理块,也就是说,对于每个块 k k k,我们将遍历所有质数(从 1 1 1 到 n \sqrt n n)并使用它们进行筛选。
值得注意的是,我们在处理第一个数字时需要稍微修改一下策略:首先,应保留 [ 1 , n ] [1, \sqrt n] [1,n] 中的所有的质数;第二,数字 0 0 0 和 1 1 1 应该标记为非素数。在处理最后一个块时,不应该忘记最后一个数字 n n n 并不一定位于块的末尾。
以下实现使用块筛选来计算小于等于 n n n 的质数数量。
实现:
int count_primes(int n) {
const int S = 10000;
vector<int> primes;
int nsqrt = sqrt(n);
vector<char> is_prime(nsqrt + 1, true);
for (int i = 2; i <= nsqrt; i++) {
if (is_prime[i]) {
primes.push_back(i);
for (int j = i * i; j <= nsqrt; j += i) is_prime[j] = false;
}
}
int result = 0;
vector<char> block(S);
for (int k = 0; k * S <= n; k++) {
fill(block.begin(), block.end(), true);
int start = k * S;
for (int p : primes) {
int start_idx = (start + p - 1) / p;
int j = max(start_idx, p) * p - start;
for (; j < S; j += p) block[j] = false;
}
if (k == 0) block[0] = block[1] = false;
for (int i = 0; i < S && start + i <= n; i++) {
if (block[i]) result++;
}
}
return result;
}
分块筛法的渐进时间复杂度与埃氏筛法是一样的(除非块非常小),但是所需的内存将缩小为
O
(
n
+
S
)
O(\sqrt{n} + S)
O(n+S),并且有更好的缓存结果。
另一方面,对于每一对块和区间
[
1
,
n
]
[1, \sqrt{n}]
[1,n] 中的素数都要进行除法,而对于较小的块来说,这种情况要糟糕得多。
因此,在选择常数
S
S
S 时要保持平衡。
块大小 S S S 取 1 0 4 10^4 104 到 1 0 5 10^5 105 之间,可以获得最佳的速度。
线性筛法
埃氏筛法仍有优化空间,它会将一个合数重复多次标记。有没有什么办法省掉无意义的步骤呢?答案是肯定的。
如果能让每个合数都只被标记一次,那么时间复杂度就可以降到 O ( n ) O(n) O(n) 了。
实现:
vector<int> pri;
bool not_prime[N];
void pre(int n) {
for (int i = 2; i <= n; ++i) {
if (!not_prime[i]) {
pri.push_back(i);
}
for (int pri_j : pri) {
if (i * pri_j > n) break;
not_prime[i * pri_j] = true;
if (i % pri_j == 0) {
// i % pri_j == 0
// 换言之,i 之前被 pri_j 筛过了
// 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定会被
// pri_j 的倍数筛掉,就不需要在这里先筛一次,所以这里直接 break
// 掉就好了
break;
}
}
}
}
上面的这种 线性筛法 也称为 Euler 筛法(欧拉筛法)。
筛法求欧拉函数
注意到在线性筛中,每一个合数都是被最小的质因子筛掉。比如设 p 1 p_1 p1 是 n n n 的最小质因子, n ′ = n p 1 n' = \frac{n}{p_1} n′=p1n,那么线性筛的过程中 n n n 通过 n ′ × p 1 n' \times p_1 n′×p1 筛掉。
观察线性筛的过程,我们还需要处理两个部分,下面对 n ′ m o d p 1 n' \bmod p_1 n′modp1 分情况讨论。
如果 n ′ m o d p 1 = 0 n' \bmod p_1 = 0 n′modp1=0,那么 n ′ n' n′ 包含了 n n n 的所有质因子。
φ ( n ) = n × ∏ i = 1 s p i − 1 p i = p 1 × n ′ × ∏ i = 1 s p i − 1 p i = p 1 × φ ( n ′ ) \begin{aligned} \varphi(n) & = n \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}} \\\\ & = p_1 \times n' \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}} \\\\ & = p_1 \times \varphi(n') \end{aligned} φ(n)=n×i=1∏spipi−1=p1×n′×i=1∏spipi−1=p1×φ(n′)
那如果 n ′ m o d p 1 ≠ 0 n' \bmod p_1 \neq 0 n′modp1=0 呢,这时 n ′ n' n′ 和 p 1 p_1 p1 是互质的,根据欧拉函数性质,我们有:
φ ( n ) = φ ( p 1 ) × φ ( n ′ ) = ( p 1 − 1 ) × φ ( n ′ ) \begin{aligned} \varphi(n) & = \varphi(p_1) \times \varphi(n') \\\\ & = (p_1 - 1) \times \varphi(n') \end{aligned} φ(n)=φ(p1)×φ(n′)=(p1−1)×φ(n′)
实现
vector<int> pri;
bool not_prime[N];
void pre(int n) {
for (int i = 2; i <= n; ++i) {
if (!not_prime[i]) {
pri.push_back(i);
}
for (int pri_j : pri) {
if (i * pri_j > n) break;
not_prime[i * pri_j] = true;
if (i % pri_j == 0) {
// i % pri_j == 0
// 换言之,i 之前被 pri_j 筛过了
// 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定会被
// pri_j 的倍数筛掉,就不需要在这里先筛一次,所以这里直接 break
// 掉就好了
break;
}
}
}
}
筛法求莫比乌斯函数
定义
根据莫比乌斯函数的定义,设 n n n 是一个合数, p 1 p_1 p1 是 n n n 的最小质因子, n ′ = n p 1 n'=\frac{n}{p_1} n′=p1n,有:
μ ( n ) = { 0 n ′ m o d p 1 = 0 − μ ( n ′ ) otherwise \mu(n)= \begin{cases} 0 & n' \bmod p_1 = 0\\\\ -\mu(n') & \text{otherwise} \end{cases} μ(n)=⎩ ⎨ ⎧0−μ(n′)n′modp1=0otherwise
若 n n n 是质数,有 μ ( n ) = − 1 \mu(n)=-1 μ(n)=−1。
实现
vector<int> pri;
bool not_prime[N];
int mu[N];
void pre(int n) {
mu[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!not_prime[i]) {
mu[i] = -1;
pri.push_back(i);
}
for (int pri_j : pri) {
if (i * pri_j > n) break;
not_prime[i * pri_j] = true;
if (i % pri_j == 0) {
mu[i * pri_j] = 0;
break;
}
mu[i * pri_j] = -mu[i];
}
}
}