Stable Diffusion:老照片修复,老照片的数字化重生

5分钟 Stable Diffusion 本地安装-本地部署(秋叶整合包)【Stable Diffusion 实战教程】_stable diffusion 秋叶整合包-CSDN博客

让 stable diffusion 局域网访问:详细解析配置步骤【Stable Diffusion 实战教程】_内网 stable diffusion-CSDN博客

探索Stable Diffusion:模型下载、模型应用【Stable Diffusion 实战教程】-CSDN博客

查看图片的提示词 Stable Diffusion 查看图片参数与抹除图片参数 AI绘画【Stable Diffusion 实战教程】-CSDN博客

艺术二维码:当科技遇上艺术 【Stable Diffusion 实战教程】-CSDN博客

Stable Diffusion:老照片修复,老照片的数字化重生-CSDN博客

Stable Diffusion 修复老照片操作指南

Stable Diffusion 是一种基于深度学习的图像处理技术,能够有效地修复老照片的损坏和褪色。以下是使用 Stable Diffusion 修复老照片的步骤:

模型选择

  • 选择模型:选择一个真实模型,以便修复后的照片看起来更真实。我这里选择:realisticVisionV20,大家有更好的给我推荐哦。
  • ControlNet Tile模型:可以选择此模型用于放大和补充细节。在这里就是用来控制图片不要随意乱画,必须按照指定的图片,可以补充细节。
  • ADetailer插件:用于修复人脸的插件。也需要加载对应的模型。

参数设置

  • 基础生成参数:选择合适的模型后,填写合适的提示词和反向提示词。
  • 缩放模式:可以选择裁剪模式,如果不改变尺寸则不会有影响,改变尺寸时会进行截取。
  • 尺寸:一般选择原图尺寸进行生成,之后再进行裁剪。
  • 提示词引导系数:可以选择默认值,如果生成效果不满意,可以尝试调整。
  • 重绘强度:可以选择1以更好地补充细节,根据实际情况进行调整。

注意提示词需要匹配照片。不会写的同学,可以使用WebUI中的反向推导工具先生成一个,然后再进行修改,我这里贴出这张图的提示词:

提示词:ultra detailed, masterpiece, best quality, an photo of a old man in a hat and a hat on his heads, with greying temples, (looking at viewer), a character portrait, mingei,simple background, clean
反向提示词:easy_negative, NSFW, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, skin spots, acnes, skin blemishes,age spot, (ugly:1.331), (duplicate:1.331),(morbid:1.21), (mutilated:1.21), (tranny:1.331),flower,lines,white point,plant,

操作步骤

  • 设置ControlNet Unit:在第一个Unit中上传原图,启用ControlNet,选择“Pixel Perfect”和“Allow Preview”选项。
  • 修脸插件:如果修复的是人脸照片,可以尝试使用修脸插件。

这里选择Control类型为 Tile,注意预处理器和模型都要对应上,都是包含tile的,一般WebUI会自动选择上,没有自动的需要自己选择;

Control Weight 用来控制Tile的权重;

Starting Control Step 和 Ending Control Step 用来控制ControlNet介入图像生成的步骤。

如果想让SD更自由发挥一下,可以调整下权重和介入步数,这里采用默认值。

生成结果

  • 生成:最后点击生成按钮,查看修复效果。

参数调整

  • 结合算法:在进行照片修复时,需要结合算法1和算法2,并根据生成的效果进行微调参数。

### 使用 Stable Diffusion 进行老照片修复 #### 准备工作 为了使用 Stable Diffusion 模型进行老照片修复,需先安装并配置好相应的环境。这通常涉及下载预训练模型以及设置运行所需的依赖项。 #### 导入图片与选择模型 当准备就绪后,在附加功能界面中将待修复老照片导入程序[^2]。对于希望获得更接近真人的效果而言,挑选合适的模型至关重要;例如,“chilloutmix_NiProunedFp32Fix” 是一种可选的真实感增强模型。“realisticVisionV20”同样作为另一种推荐用于追求逼真度的选择[^3]。 #### 参数调整 针对特定需求定制参数能够显著提升最终成果的质量。比如,CodeFormer作为一个专注于图像修复的工具,可以通过调节其内部参数更好地处理人脸细节、纹理及色彩等方面的问题,从而实现更为细腻且真实的修复效果[^1]。 #### 执行修复过程 完成上述准备工作之后,启动修复流程即可等待软件自动处理直至输出优化后的版本。期间可根据实际情况适时监控进度并对必要之处作出微调。 ```python from diffusers import StableDiffusionInpaintPipeline pipeline = StableDiffusionInpaintPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') pipeline.to("cuda") # 如果GPU可用则加速计算 image_path = "path_to_your_old_photo.jpg" mask_image_path = "path_to_mask.png" output = pipeline(prompt="修复这张旧照片", image=image_path, mask_image=mask_image_path).images[0] output.save("restored_image.png") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值