题目:元素出栈、入栈顺序的合法性。如:入栈的序列(1,2,3,4,5),出栈序列为(4,5,3,2,1),则合法。入栈的序列(1,2,3,4,5),出栈序列为(4,5,2,3,1),则不合法。
思路:建立一个辅助栈,把输入的第一个序列中的数字一次压入该辅助栈,并按照第二个序列的顺序从该栈中弹出数字
遍历出栈顺序中的元素,有两种情况 :
(1)如果元素是栈顶的元素,则pop出来;
(2)如果不是栈顶元素,则根据入栈顺序将没入栈的元素push进栈,直到将该元素push栈中,然后将该元素pop出来;
如果push完所有元素都没有找到该元素,那么这个出栈顺序是错误的。最后辅助栈为空栈,并且遍历完了出栈序列的最后一个元素(二者缺一不可),那么该序列就是 一个弹出序列。实现代码:
bool IstruePoporder(const int*pushorder,int*poporder, int length1,int length2)
{
if (NULL == pushorder || NULL == poporder || length1 != length2)
return false;
int *cur = poporder;
stack<int> s;
int j = 0;
for (int i = 0; i < length1; ++i)
{
s.push(pushorder[i]);
while (!s.empty() && *cur == s.top())
{
s.pop();
cur++;
j++;
}
}
if (s.empty() && j == length2)
return true;
return false;
}